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Large-scale optimization problems abound in data mining and machine learning appli-
cations, and the computational challenges they pose are often addressed through parallelization.
We identify structural properties under which a convex optimization problem can be massively
parallelized via map-reduce operations using the Frank-Wolfe (FW) algorithm. The class of prob-
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via commercial distributed computing frameworks. We demonstrate this by implementing FW over
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Chapter 1

Introduction

1.1 Motivation

Many interesting problems in machine learning, such as logistic regression, linear and

non-linear regression, training Support Vector Machines (SVM), and experimental design can be

formulated as convex optimization problems. Moreover, as a result of drastic growth in the size

of data, these optimization problems in practice are large-scale: often, the problem input size is in

the order of terabytes and the number of variables is in the order of millions or billions. This has

motivated the study of distributed optimization algorithms, implemented in distributed frameworks

that leverage the massively parallel computational power of computer clusters.

Map-reduce [1, 2] is such a distributed framework used to massively parallelize compu-

tationally intensive tasks. In comparison to other distributed frameworks, e.g., MPI, it enjoys a

wider deployment in commercial cloud services such as Amazon Web Services, Microsoft Azure,

and Google Cloud, and is extensively used to parallelize a broad array of data-intensive algorithms

[3, 4, 5, 6, 7]. Moreover, programming in map-reduce is less cumbersome than in the MPI framework,

which requires explicit specifications of communication types as well as of the processors that need

to communicate. Expressing algorithms in map-reduce also allows fast deployment at a massive

scale: any algorithm expressed in map-reduce operations can be quickly implemented and distributed

on a commercial cluster via existing programming frameworks [1, 2, 8].

There are several optimization techniques, e.g., Stochastic Gradient Descent (SGD) and

The Alternating Directions Method of Multipliers (ADMM), that can be parallelized in map-reduce

frameworks. SGD [9, 10, 11, 12, 7] parallelizes optimization problems in which the objective is the

sum of differentiable functions. Many important problems, including regression and classification,
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CHAPTER 1. INTRODUCTION

fall into this category, and SGD has been tremendously successful at tackling them [9, 10, 11, 12].

SGD computes the contribution of different terms to the gradient in parallel, and adapts the present

solution in a centralized fashion, often asynchronously. Distributed Stochastic Dual Coordinate

Ascent (DSDCA) [13] also solves problems with separable objectives by parallelizing their dual.

ADMM [14] applies to both separable and non-separable objectives, including LASSO

(c.f. Sec. 4.2). In general, the above methods do not readily generalize to the optimization problems

we study here. Moreover, their message complexity increases with the number of variables; indeed,

parallel SGD and ADMM over millions of variables assume that each term depends only on a few

coordinates [9, 11, 14]. We do not assume sum objectives or any sparsity conditions here.

Despite these advantages, there exist important optimization problems that cannot be easily

parallelized with these methods. In this thesis, we focus on the so-called Frank-Wolfe algorithm (FW),

also known as the conditional gradient algorithm [15], and on its parallelization. The Frank-Wolfe

algoithm has attracted interest recently due to its numerous computational advantages [16, 17, 18,

19, 20, 21]. It maintains feasibility throughout execution while being projection-free, and minimizes

a linear objective in each step; the latter yields sparse solutions for several interesting constraint sets,

which often accelerates computation [20, 22, 21]. Therefore, distributing the Frank-Wolfe algorithm

is very useful as it can solve this wide set of problems. Most importantly, as described in Section 2.3,

the Frank-Wolfe algorithm can be used to solve more general problems than the ones described

above. For example, it does not require any assumption on separability or sparsity of the objective.

1.2 Distributing Frank-Wolfe

FW [15] is a convex optimization algorithm that solves the convex optimization problems

of the form:

Minimize F (θ)

subj. to: θ ∈ D,

where F : RN → R is a convex function and D is a convex compact subset of RN . The algorithm

selects an initial feasible point θ0 ∈ D and proceeds as follows:

sk = arg min
s∈D

s> · ∇F (θk),

θk+1 = (1− γk)θk + γksk,

2



CHAPTER 1. INTRODUCTION

for k ∈ N, where γk ∈ [0, 1] is the step size. Basically, at each iteration it finds a feasible point

sk ∈ D that minimizes the first-order Taylor approximation of the function F around the current

solution θk. This is an advantage of FW as it reduces the optimization of a general form convex

function F to the optimization of a linear function, subject to the same constraint set. Then, it adapts

the solution by finding a convex combination of the points θk, sk ∈ D. As a result, it maintains the

feasibility of the solution θk at all iterations k ∈ N.

An effort to distribute FW is made by Bellet et al. in [22]. They propose a distributed

version of FW for objectives of the form F (θ) = g(Aθ), for some A ∈ Rd×N , where d� N . This

function form is more general than the separable form assumption of the previous algorithms. Several

examples fall in this class, including two we study here (convex approximation and Adaboost);

intuitively, Aθ serves as we call the common information in our framework (c.f. Prop. 1 in Sec. 3).

The authors characterize the message and parallel complexity when A is partitioned across multiple

processors under broadcast operations. We (a) consider a broader class of problems, that do not abide

by the structure presumed by Bellet et al. (e.g., the two experimental design problems presented

in Sec. 4.1), and (b) establish properties under which FW can be explicitly parallelized through

map-reduce rather than the message passing environment proposed by Bellet et al. This allows us

to leverage commercial map-reduce frameworks to readily implement and deploy parallel FW on a

cluster.

More specifically, we focus on solving, via map-reduce, optimization problems of the

form:

min
θ∈D0

F (θ), (1.1)

where F : RN → R is a convex, differentiable function, and

D0 ≡
{
θ ∈ RN+ :

∑N
i=1 θi = 1

}
(1.2)

is the N -dimensional simplex. Several important problems, including experimental design, training

SVMs, Adaboost, and projection to a convex hull indeed take this form [20, 22, 23]. We are

particularly interested in cases where (a) N � 1, i.e., the problem is high-dimensional, and, (b)

F cannot be written as the sum of differentiable convex functions. We note that, as described in

detail in Sec. 2.2, this is precisely the regime in which (1.1) is hard to parallelize via, e.g., stochastic

gradient descent.

It is well known that (1.1) admits an efficient implementation through the Frank-Wolfe

(FW) algorithm [15]. Indeed, as we discuss in Sec. 2.3.4, FW assumes a very simple, elegant form

3



CHAPTER 1. INTRODUCTION

under this simplex constraint, and has important computational advantages [20, 21, 22]. Our main

contribution is to identify and formalize a set of conditions under which solving Problem (1.1)

through FW admits a massively parallel implementation via map-reduce.

1.3 Our Contributions

We make the following contributions:

• We identify two properties of the objective F under which FW can be parallelized through

map-reduce operations.

• We show that several important optimization problems, including experimental design, Ad-

aboost, and projection to a convex hull satisfy the aforementioned properties.

• We extend our results beyond the simplex. In particular, we show that our distributed algorithm

can be applied to problems with atomic norm constraints, including, e.g., the popular `1-norm

constraint se, also known as “lasso”.

• We implement our distributed FW algorithm on Spark [8], an engine for large-scale distributed

data processing. Our implementation is generic: a developer using our code needs to only

implement a few problem-specific computational primitives; our code handles execution over

a cluster.

• We extensively evaluate our Spark implementation over large synthetic and real-life datasets,

illustrating the speedup and scalability properties of our algorithm. For example, using 350

compute cores, we can solve problems of 20 million variables in 79 minutes, an operation that

would take 165 hours when executed serially.

• We introduce two stochastic variants of distributed FW, in which we only compute a subsample

of the elements of the gradient. We implement these algorithms on Spark and compare their

performance with distributed FW.

The remainder of this thesis is organized as follows. We briefly review the formal definition

of convex optimization problems and related work, introduce FW and its variants, and introduce

distributed frameworks in Chapter 2. In Chapter 3, we state the properties under which FW admits a

parallel implementation via map-reduce, and describe the resulting algorithm. Examples of problems

that satisfy these properties and possible extensions of applications of our algorithm on constraint

4



CHAPTER 1. INTRODUCTION

sets beyond the simplex are given in Chapter 4. Then, in Chapter 5 we describe our implementation

and the results of our experiments over a Spark cluster. Finally, we conclude this thesis in Chapter 6.
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Chapter 2

Technical Preliminary and Related Work

The main focus of this thesis is distributing the Frank-Wolfe algorithm, which is a convex

optimization method. We give the formal definitions of convex optimization and related concepts

in Section 2.1. We then introduce several existing distributed convex optimization methods in

Section 2.2, discussing their relative advantages and limitations. Next, we describe the Frank-Wolfe

algorithm in detail in Section 2.3. We conclude this chapter in Section 2.4 by introducing map-reduce

and MPI, two popular distributed frameworks.

2.1 Convex Optimization

Convex set. A set D ∈ RN is called convex if the line segment defined by any two points in the set

lies within the set. Formally, for every θ1, θ2 ∈ D and α ∈ [0, 1] we have:

(1− α)θ1 + αθ2 ∈ D.

Given m points θ1, . . . , θm ∈ RN , a point θ ∈ RN is called a convex combination of

θ1, . . . , θm if there exist α1, . . . αm ∈ R≥0, s.t.,
∑m

i=1 αi = 1 and

θ =

m∑
i=1

αiθi.

The set of all convex combinations of a set D is called the convex hull of D, and is denoted by

conv(D). It is straightforward to show that the convex hull of every set is a convex set. Moreover,

the convex hull of a set is also the smallest convex set that contains it.

6
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Convex function. A function F : RN → R is convex if (a) its domain domF is a convex set and (b)

for all θ1, θ2 ∈ domF and α ∈ [0, 1] it holds that

F ((1− α)θ1 + αθ2) ≤ (1− α)F (θ1) + αF (θ2).

In other words, the line segment between the points (θ1, F (θ1)), (θ2, F (θ2)) lies above the graph

of the function F . A function F is called strongly convex if the above inequality holds with strong

inequality for α 6= 0, 1.

A convex function is continuous but not necessarily differentiable. When F is differentiable,

convexity is equivalent to the following first-order condition [23]:

F (θ2) ≥ F (θ1) +∇F (θ1)>(θ2 − θ1) ∀θ1, θ2 ∈ domF. (2.1)

Moreover, if F is differentiable and strongly convex there exists a constant β ∈ R+, s.t.,

F (θ2) ≥ F (θ1) +∇F (θ1)>(θ2 − θ1) + β‖θ2 − θ1‖22 ∀θ1, θ2 ∈ domF. (2.2)

In other words, there is a quadratic lower-bound for F . In this case, we call F β-strongly convex.

Lipschitz continuity. For a subset S ⊂ RN a function F is Lipschitz continuous on S w.r.t. the

Euclidean norm ‖ · ‖ if there exists a constant L such that

‖F (θ1)− F (θ2)‖ ≤ L‖θ1 − θ2‖, ∀θ1, θ2 ∈ S.

Lipchitz continuity measures smoothness of the function F . It can also be extended to derivatives of

F : the k-th derivative F (k) is Lipchitz continuous on S if

‖F (k)(θ1)− F (k)(θ2)‖ ≤ L‖θ1 − θ2‖, ∀θ1, θ2 ∈ S.

Moreover, a differentiable function F is called α-smooth if there exists a α ∈ R+, s.t.,

F (θ2) ≤ F (θ1) +∇F (θ1)>(θ2 − θ1) + α‖θ2 − θ1‖22 ∀θ1, θ2 ∈ domF.

Curvature. A concept closely related to Lipchitz continuity is the curvature, which is a measure of

nonlinearity of the convex function F over the convex domain D [21]. Formally, the curvature Cf of

a convex and differentiable function F is defined as:

CF ≡ sup
θ1,s∈D,α∈[0,1],θ2=(1−α)θ1+αs

2/α2(F (θ2)− F (θ1)− (θ2 − θ1)>∇F (θ1)).

From (2.1) we know that if F is convex and differentiable, then F (θ2) lies above its

first-order Taylor approximation F (θ1) + (θ2 − θ1)>∇F (θ1). Hence, Cf measures the maximum

7
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deviation of F at θ2 from its linearization at θ1, scaled with the inverse of the step-size α. For

example, if F is a linear function, its curvature CF is zero.

The curvature of F is related to the Lipchitz continuity constant of the gradient of F : if∇F
is L-Lipchitz continuous on D then CF ≤ (diam(D))2 L, where diam(D) ≡ supθ1,θ2∈D ‖θ1 − θ2‖
denotes the diameter of the set D [21].

Convex optimization. A general convex optimization problem has the form:

min
θ∈D

F (θ),

where F : RN → R is a convex function and D is a convex set. A property that makes convex

optimization appealing is that every local minimum is a global minimum. Furthermore, for convex

optimization the necessary and sufficient optimality condition is given by the following theorem.

Theorem 2.1.1 (Bertsekas, [24]) For a convex and differentiable function F , the point θ∗ is a

minimum of F over a convex set D if and only if

∇F (θ∗)>(θ − θ∗) ≥ 0, ∀θ ∈ D.

2.2 Distributed Methods for Convex Optimization

2.2.1 SGD

Stochastic Gradient Descent (SGD) [25] is a popular algorithm suited for unconstrained

optimization problems of the form

Minimize F (θ) =
N∑
i=1

1

N
Fi(θ), (2.3)

where Fi(θ) = L(xi, θ) + r(θ). The functions L : Rm × Rd → R, r : Rd → R are convex,

differentiable and Lipchitz continuous, and each xi is, e.g., a feature vector of the i-th datapoint in

some dataset. Usually, L is a loss function (e.g., for logistic regression it would be logistic loss) and

r is a regularization term, e.g., r(θ) = λ‖θ‖22.
SGD solves (2.3) by iteratively performing a sampled form of gradient descent. In particu-

lar, the gradient is approximated via the contribution of only one randomly chosen term Fj to∇F :

formally, each iteration k + 1 of the algorithm is:

θk+1 = θk − α∇Fj(θk),

8



CHAPTER 2. TECHNICAL PRELIMINARY AND RELATED WORK

where j ∈ {1, . . . , N} is drawn uniformly at random (u.a.r.) and independently of previous iterations.

ParallelSGD, proposed by [10], parallelizes SGD in the following way: assume that there

are P workers, e.g., processors or threads, available. Each worker p independently runs SGD for T

iterations and returns a solution θp. The final solution returned by the algorithm is the average of the

solutions found by the workers:

θ̂ = 1/P
P∑
p=1

θp. (2.4)

The most direct implementation requires the storage of the whole dataset on each worker; however,

as it is discussed in [10] this can be avoided in practice, as each worker only touches T datapoints,

selected u.a.r.; these can be pre-sampled to avoid transferring all N datapoints to a worker.

Despite the simplicity of ParallelSGD, the following strong convergence bound holds (here

g(θ) = λ‖θ‖22):

E
θ̂∈Q

[F (θ̂)]−min
θ
F (θ) ≤ 8αG2

√
Pλ

√
L∇F +

8αG2L∇F
Pλ

+ 2αG2,

whereQ is the distribution of θ̂, under P workers and T = logP−(logα−log λ)
2αλ iterations, and G,L∇F

are upper-bounds for the Lipchitz continuity constants of L,∇F, respectively.

This and different implementations of distributed SGD [26, 9, 12, 11] suffer from several

drawbacks: first of all, the algorithm heavily depends on a separable objective function, while many

problems of interest do not have this form (see, e.g., D-OPTIMALDESIGN and A-OPTIMALDESIGN

in Section 4.1). Second, it requires the communication and per-worker storage of the whole vector θ,

which can be large; this can be avoided when each function Fi depends on a few coordinates of θ

[9, 26, 11], but not when the functions F1, . . . , FN have dense support. Moreover, SGD requires a

differentiable objective, which further limits the problems that it can solve. For example, it cannot be

applied to problems with the widely-used `1 regularization term.

2.2.2 ADMM

The Alternating Directions Method of Multipliers (ADMM), proposed by Boyd et al. [14],

is another distributed optimization algorithm. ADMM solves problems of the form

Minimize F (θ1) + g(θ2) (2.5a)

subj. to Aθ1 +Bθ2 = C, (2.5b)

9
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where the functions F : RN → R, g : Rm → R are convex, A ∈ Rp×N , B ∈ Rp×m, and C ∈ Rp.

ADMM forms the augmented Lagrangian:

L(θ1, θ2, y) = F (θ1) + g(θ2) + y>(Aθ1 +Bθ2 − C) + ρ/2‖Aθ1 +Bθ2 − C‖22,

where y ∈ Rp is the dual variable associated with (2.5b). ADMM minimizes the augmented

Lagrangian w.r.t. the primal variables θ1, θ2 alternatively, i.e., keeping one fixed and optimizing w.r.t.

other one. Then, it updates the dual variable via gradient ascent. Formally, the algorithm proceeds as

follows:

θk+1
1 := arg min

θ1

L(θ1, θ
k
2 , y

k)

θk+1
2 := arg min

θ2

L(θk+1
1 , θ2, y

k) for k ∈ N

yk+1 := yk + α(Aθk+1
1 +Bθk+1

2 − C).

Note that this is similar to Dual Ascent, but allows us to divide the primal variables to two sets and

optimize them alternatively.

Consensus ADMM can be used to parallelize optimization problems with a separable

objective function, i.e., problems of the form:

Minimize
N∑
i=1

Fi(θ) + g(θ).

Usually, each term Fi : Rd → R represents a loss function associated with the i-th datapoint,

g : Rd → R is a regularization term, e.g., `1 penalty term, and θ ∈ Rd. This problem can be

reformulated as:

Minimize
N∑
i=1

Fi(θi) + g(z) (2.6a)

subj. to θi = z i = 1, . . . , N, (2.6b)

which is known as the consensus problem. The ADMM steps for (2.6) take the form:

θk+1
i := arg min

θi

Fi(θi) + (yki )>(θi − zk) + ρ/2‖θi − zk‖22 (2.7)

zk+1 := arg min
z

g(z) +
N∑
i=1

(
−(yki )>z + ρ/2‖θk+1

i − z‖22
)

(2.8)

yk+1
i := yki + ρ(θk+1

i − zk+1). (2.9)
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Note that here the optimization w.r.t. each θi and adaptation of yi can be done independently by a

separate worker, i.e., a core or a thread. Also, the second step (2.8) can be done by a central unit in

case d is small. This step can be further parallelized again when F1, . . . , FN depend on few variables

[14].

ADMM offers several advantages. First, it can solve convex optimization problems with

non-differentiable terms in the objective. In particular, it reduces the optimization of any convex

function plus a `1 regularization term to the optimization of a quadratic term plus the `1 regularization

term, which has a closed-form solution. Moreover, it can parallelize other generic optimization

problems (see Sections 7 and 8 of [14]). However, it again assumes a separable objective function,

which restricts the class of problems that it can solve. Finally, Consensus ADMM may not scale

where the variable θ is high-dimensional and the functions F1, . . . , FN have dense support.

2.2.3 DSDCA

Distributed Stochastic Dual Coordinate Ascent (DSDCA) is another parallelizable opti-

mization algorithm, which solves problems in their dual domain [13]. DSDCA solves problems of

the form:

Minimize
N∑
i=1

Fi(θ
>xi) + g(θ), (2.10)

where functions Fi : R → R, i = 1, . . . , N, are convex and Lipchitz continuous, g : Rd → R is

a β-strongly convex function, and x1, . . . , xN ∈ Rd are feature vectors. In (2.10), similar to (2.3),

each Fi, i = 1, . . . , N, denotes a loss function and g represents a regularization term; here, each loss

term Fi is explicitly a function of the linear term θ>xi.

Let us denote the convex conjugate of Fi and g by F ∗i and g∗, respectively. The dual

problem of (2.10) is given by

max
α

N∑
i=1

−F ∗i (−αi)− g∗
(

N∑
i=1

αixi

)
.

In order to solve this problem, DSDCA at each iteration updates a randomly selected subset of the

dual variables α1, . . . , αN via gradient ascent.

The separable form of the dual problem allows its solution to be parallelized: assume

that the dataset xi, i = 1, . . . , N, is distributed between P workers. At iteration k of DSDCA each

worker p iteratively updates m randomly chosen dual variables corresponding to the datapoints that

11
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it holds:

αk+1
i = αki + ∆i.

The step-size ∆i is given by maximizing the following lower-bound of the dual function, which is a

result of strong convexity of g (see (2.2)):

∆i = max
∆α
−F ∗i (−(αki + ∆α))−∆αx>i θ

k − β(∆α)2‖xi‖22,

where θk = ∇g∗(
∑N

i=1 α
k
i xi). A central unit computes θk by evaluating the gradient function

∇F ∗ : Rd → Rd.

Interestingly, it can be verified that for the optimal primal and dual solutions, i.e., θ∗ and

α∗, the following holds [13]:

θ∗ = ∇g∗(
N∑
i=1

α∗i xi).

Therefore, as αk converges to α∗, the primal solution θk also converges to its optimal value θ∗.

The main advantage of DSDCA over SGD and ADMM is its convergence rate: studies

have shown that coordinate-ascent in the dual domain outperforms SGD [27, 28, 29, 13]. Therefore,

when the objective has the particular form (2.10), DSDCA is a more efficient alternative. However,

similar to SGD and ADMM, its applicability is curbed because of the separable objective assumption.

Furthermore, just like SGD and ADMM, if the vector θ is high-dimensional, DSDCA is both

computation and communication intensive.

2.3 Frank-Wolfe

In this thesis, we focus on solving, via map-reduce, optimization problems of the form:

min
θ∈D0

F (θ), (2.11)

where F : RN → R is a convex, differentiable function, and

D0 ≡

{
θ ∈ RN≥0 :

N∑
i=1

θi = 1

}
(2.12)

is the N -dimensional simplex. Several important problems, including experimental design, training

SVMs, Adaboost, and projection to a convex hull indeed take this form [20, 22, 23] (see Section 4.1).

We are particularly interested in cases where (a) N � 1, i.e., the problem is high-dimensional, and,

(b) F cannot be written as the sum of differentiable convex functions. We note that, as described in

12
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Section 2.2, this is precisely the regime in which (2.11) is hard to parallelize via existing methods

such as SGD, ADMM, and DSDCA.

It is well known that (2.11) admits an efficient implementation through the Frank-Wolfe

(FW) algorithm [15], also known as the conditional gradient algorithm [20, 21]. We describe

the Frank-Wolfe algorithm and its benefits, in detail, in Section 2.3.1. We then discuss several

FW variants and FW distributed implementations in Sections 2.3.2 and 2.3.3, respectively. In

Section 2.3.4, we illustrate how FW assumes a very simple and elegant form under the simplex

constraint D0. This has important computational advantages, which we use later on for parallelizing

FW.

2.3.1 Frank-Wolfe Algorithm

The FW algorithm [15], summarized in Alg. 1, solves problems of the form:

Minimize F (θ) (2.13a)

subj. to: θ ∈ D, (2.13b)

where F : RN → R is a convex function and D is a convex compact subset of RN . The algorithm

selects an initial feasible point θ0 ∈ D and proceeds as follows:

sk = arg min
s∈D

s> · ∇F (θk), (2.14a)

θk+1 = (1− γk)θk + γksk, (2.14b)

for k ∈ N, where γk ∈ [0, 1] is the step size. At each iteration k ∈ N, FW finds a feasible point

sk minimizing the inner product with the current gradient, and interpolates between this point and

the present solution. Note that θk+1 ∈ D, as a convex combination of θk, sk ∈ D; therefore, the

algorithm maintains feasibility throughout its execution. Steps (2.14a),(2.14b) are repeated until a

convergence criterion is met; we describe how to set this criterion and the step size γk below.

Convergence criterion. Convergence is typically determined in terms of the duality gap [21]. The

duality gap at feasible point θk ∈ D in iteration k ∈ N is:

g(θk) ≡ max
s∈D

(θk − s)>∇F (θk)
(2.14a)

= (θk − sk)T∇F (θk), (2.15)

The convexity ofF implies thatF (θk)−F (θ∗) ≤ g(θk) for any optimal solution θ∗ ∈ arg minθ∈D F (θ)

[21]. In other words, g(θ) is an upper bound on the objective value error at step k. The algorithm,

therefore, terminates once the duality gap is smaller than some ε > 0.
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Algorithm 1 FRANK-WOLFE

1: Pick θ0 ∈ D
2: k := 0

3: repeat

4: sk := arg mins∈D s
> · ∇F (θk)

5: gap := (θk − sk)>∇F (θk)

6: θk+1 := (1− γk)θk + γksk

7: k := k + 1

8: until gap < ε

Step Size. The step size can be diminishing, e.g., γk = 2
k+2 , or set through line minimization, i.e.:

γk = arg min
γ∈[0,1]

F
(
(1− γ)θk + γsk

)
. (2.16)

Convergence to an optimal solution is guaranteed in both cases for problems in which the objective

has a bounded curvature [15, 21]. In this case, both of the above step sizes imply that the k-th iteration

of the Frank-Wolfe algorithm satisfies F (θk)− F (θ∗) ≤ O( 1
k ) [21]. For arbitrary convex objectives

with unbounded curvature, FW still converges if the step size is set by the line minimization rule

[24].

FW has several advantages. First, it reduces the optimization of a general convex function

subject to a convex constraint set to the optimization of a linear objective function (see (2.14a))

subject to the convex constraint set. For several constraint sets of practical interest, e.g., linear

constraint sets, these sub-problems are solved efficiently [21, 30]. In particular, when the constraint

set is a linear constraint set, FW reduces the original problem to solving a sequences of linear

programming problems; these problems can be solved by efficient linear programming techniques.

Another example is the simplex constraint set; we show in Section 4.1 that many problems of interest

have this constraint set. As we discuss in Section 2.3.4, sub-problem (2.14a) admits a very simple

solution under this constraint set.

Another advantage of FW over other methods such as ADMM or barrier methods is that it

maintains feasibility by finding convex combinations of feasible points (see (2.14b)). It is important

for applications that require feasibility of the solutions through the iterations. Moreover, in contrast

to other optimization methods that generate feasible solutions, e.g., projected gradient descent, FW is

projection-free. Projected gradient descent, projects the solution on the constraint set at each iteration

to obtain a feasible solution. The projection on a constraint set requires minimizing a quadratic

14



CHAPTER 2. TECHNICAL PRELIMINARY AND RELATED WORK

function, which measures the distance between the given point and a point on the set, subject to

the original constraint set. As discussed in [17] for many constraint sets of interest solving (2.14a)

with a linear objective is significantly cheaper than solving the projection problem with a quadratic

function. In particular, projection of a matrix X ∈ RM×N on the set of bounded trace norm matrices

requires finding the SVD decomposition of X , while solving (2.14a) is done by only finding the

top-eigenvectors of X . The former has a time complexity of O(NM2), while for the latter fast

algorithms, linear in the number of non-zero elements of X , exist [17].

Moreover, FW for some constraint sets, e.g., the simplex, generates sparse solutions with

provable approximations [20]. Sparse solutions are often desired in practice; for example in [31] they

are used to speed up the solutions of SVM problem. The solution to (2.14a) for the simplex is given

by (2.19). This solution is extremely sparse, i.e., it has only one non-zero element. This along with

the simple adaptation step (2.14b) ensures that the solution at k-iteration θk has at most k non-zero

elements. Moreover, considering the convergence guarantees of FW, this sparse solution is within

the 1
k -neighborhood of the optimal solution.

2.3.2 FW Variants

There are several variants of FW in the literature. In general, these variants are divided

to two groups; first group improves the convergence rate of FW [32, 33, 34, 35, 36, 37]. The

other group reduces computation time of each iteration of FW by randomizing the algorithm, while

obtaining convergence guarantees [17, 38, 39, 40]. As these algorithms are not readily parallelizable

or applicable to the problems we consider here, we focus on parallelizing the classic FW in this

thesis. We leave parallelization of these variants for future work. Nonetheless, for completeness, we

explain some of these variants in this Section.

Fast-convergent variants. When the optimal solution lies at the boundary of the constraint set,

FW converges slowly, i.e., the O(1
ε ) convergence rate is tight [41, 42, 15, 21]. This is because

the iterations of the classic FW zig-zag between the vertices defining the face that contains the

optimal solution. To avoid this zig-zagging phenomenon, Wolfe in [32] proposed a variant using

‘away-points’; the basic idea is to move away from a ‘bad’ direction. Guélat and Marcotte [43]

analyzed this further, and showed a linear convergence rate on polytope constraint sets. Several

recently proposed FW variants improve the previous results for Away-steps Frank-Wolfe and attain

linear convergence under weaker conditions [33, 34, 35, 36, 37].

Here, we introduce two of these variants, i.e., Away-step FW and Pairwise FW: Lacoste-
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Jullien and Jaggi [35] showed that for a strongly-convex objective and a polytope constraint set these

variants enjoy a linear convergence rate. In particular, they solve (2.13) for a strongly-convex F and

the constraint set

D = conv(A),

where A is a finite set of M points a1, . . . , aM ∈ RN , called atoms. Note that (2.14a) for this

constraint set takes the form:

akFW = arg min
a∈A

a> · ∇F (θk). (2.17)

They refer to akFW as FW atom. In both of the variants, the solution θk at each iteration k is a convex

combination of the atoms:

θk =
M∑
i=1

γki ai.

At each iteration, they denote the active atoms by the set Ak = {ai ∈ A : γki > 0}.
Away-step FW. The basic idea for Away-step FW is to mitigate the zig-zagging phenomenon by

moving away from a bad direction, i.e., the direction d that maximizes the descent potential given by

P ≡ d> · ∇F (θ). At each iteration k, Away-step FW, just like FW, finds the FW atom akFW given

by (2.17). Then, it finds an away atom given by:

akA = arg max
a∈Ak

a> · ∇F (θk). (2.18)

Note that, here, the search region is over the selected atoms Ak ⊆ A, which is usually smaller

than A. Therefore, this optimization problem is easier than (2.17). Then, Away-step FW evaluates

the descent potentials corresponding to the FW and away atoms, i.e., P kFW and P kAway, respectively

defined as:

P kFW = (akFW − θk)> · ∇F (θk),

P kAway = (θk − akA)> · ∇F (θk).

Then, depending on which potential is minimum, Away-step FW adapts the current solution: in case

P kFW < P kAway, θ
k+1 is given by:

θk+1 = θk + α(akFW − θk).

Note that this is exactly the adaptation step in the classic FW (2.14b). Otherwise, if P kFW > P kAway,

the adaption has the form:

θk+1 = θk + α(θk − akA).
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Note that here for α ≥ 0, θk+1 is not a convex combination of the points θk, akA. Hence, the step-size

α is selected to ensure θk+1 ∈ D.
Pairwise FW. The basic idea in Pairwise FW is to move weights only between two atoms. Formally,

at each iteration k, Pairwise FW, similar to Away-step FW, finds the FW and away atoms, i.e., akFW
and akA, respectively. Then, it adapts the solution θk by swapping weights between these two atoms,

while keeping all other weights fixed:

θk+1 = θk + α(akFW − akA).

Note that this is different from classic FW, which shrinks all of the weights, except the FW atom

weight, by a factor of 1 − α. Again, note that θk+1 for α ≥ 0 is not a convex combination of the

points θk, akFW and akA. Therefore, the step-size is set in a way that guarantees feasibility of θk+1.

The convergence bound for Pairwise FW, proved in [35], is looser than Away-step FW. However, it

works well in practice [35].

These two FW variants, as well as others in the literature [44, 45, 46, 35] converge faster

than FW. However, as setting the step-size is more challenging and keeping track of the active atoms

further complicates the algorithm, in this thesis we focus on parallelizing the classic FW.

Stochastic variants. Stochastic variants of FW have recently been proposed [17, 38, 39, 40],

which stochastically approximate the gradient. In general, these variants solve convex optimization

problems (2.13), where the objective F has a separable form:

F (θ) = 1/M
M∑
i=1

Fi(θ).

Moreover, they consider constraint sets D, for which solving the linear sub-problem (2.14a) is easy,

while projection over them is expensive. Hazan and Kale [17] list such constraint sets.

Hazan and Kale [17] focused on an online learning setting; however, their result is inferior

to a trivial stochastic FW algorithm, called SFW in [39], which similar to SGD estimates the gradient

∇F by ∇Fi for some i ∈ {1, . . . ,M}, selected u.a.r. Lan and Zhou [38] introduced the Conditional

Gradient Sliding method, which allows the algorithm to skip the computation of the gradient from

time to time. They also proposed a stochastic version of this algorithm. Hazan and Lou [39]

improved these results by using a variance-reduced stochastic gradient [47, 48] to estimate the

gradient. Variance-reduced stochastic gradient provides an unbiased estimate of the gradient with a

bounded variance, at the expense of computing the exact gradient for a point. Hazan and Lou [39]

provide a thorough survey, and show that their algorithms outperform [17, 38] and SFW, in terms of
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the number of exact and stochastic gradient computations and the number of subproblems (2.14a)

needed to obtain a solution within ε-neighborhood of the optimal. In particular, they reduce the

number of stochastic gradient evaluations from O( 1
ε2

) to O( 1
ε1.5

) for smooth objective functions and

from O(1
ε ) to O(ln 1

ε ) for smooth and strongly-convex objective functions. Reddi et al. [40] use the

variance-reduced stochastic gradient idea to propose two stochastic variants of FW for non-convex

objective functions. They show that both algorithms converge to a stationary point, with convergence

rates faster than classic FW.

A different stochastic variants of FW solves problems with block-separable constraints

[49]. Lacoste-Julien et al. in [49], proposed a random single-block FW algorithm, in which only a

single block of variables, selected u.a.r., is updated. At the expense of computing the duality gap, the

convergence result was improved in [50].

We implement two stochastic FW variants based on gradient subsampling: the basic idea is

to compute the partial derivatives in only a random subset of the directions.We compare the relative

performance of subsampling to increasing parallelism in Section 5.2.

2.3.3 Distributed implementations

More recently, and more relevant to our work, Bellet et al. [22] propose a distributed version

of FW for objectives of the form F (θ) = g(Aθ), for some A ∈ Rd×N , where d � N . Several

examples fall in this class, including two we study here (convex approximation and Adaboost);

intuitively, Aθ serves as the common information in our framework (c.f. Sec. 3). The authors

characterize the message and parallel complexity when A is partitioned across multiple processors

under broadcast operations. Moreover, Tran et al in [51] elaborated on their algorithm, and proposed

an asynchronous version of the distributed Frank-Wolfe algorithm in [22]. It is based on their Stale

Synchronous Parallel (SSP) model [51]. They showed that the SSP based algorithm runs faster than

the one based on a Bulk Synchronous Parallel (BSP) model, which is commonly used in distributed

processing frameworks.

We differ from these implementations in the following two ways:

• We consider a broader class of problems, that do not abide by the structure presumed by Bellet

et al. or Tran et al. (e.g., the two experimental design problems presented in Sec. 4.1). Our

algorithm can be viewed as a generalization of their algorithm. In particular, our distributed

algorithm can be applied to the problems they consider, i.e., F (θ) = g(Aθ), by defining the

common information as Aθ (see Prop. 1 and 2 in Section 3).
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• We establish properties under which FW can be explicitly parallelized through map-reduce

rather than the message passing environment proposed by Bellet et al. This allows us to

leverage commercial map-reduce frameworks to readily implement and deploy parallel FW on

a cluster.

2.3.4 Frank-Wolfe Over the Simplex

We focus on FW for the special case where the feasible set D is the simplex D0, given

by (2.12). As described in Section 4.1, this set of constraints arises in many problems, including

training SVMs, convex approximation, Adaboost, and experimental design (see also [20]). Under

this set of constraints, the linear optimization problem in (2.14a) has a simple solution: it reduces

to finding the minimum element of the gradient ∇F (θk). Formally, for [N ] ≡ {1, 2, . . . , N}, and

{ei}i∈[N ] the standard basis of RN , (2.14a) reduces to:

sk = ei∗ , where i∗ ∈ arg min
i∈[N ]

∂F (θk)

∂θi
. (2.19)

Note that sk is a vector in the standard basis of RN , for all k ∈ N: as such, it is extremely sparse,

having only one non-zero element. The sparsity of sk plays a role in producing our efficient,

distributed implementation, as discussed below.

2.4 Distributed Frameworks

2.4.1 Map-Reduce Framework

Map-reduce [1, 2] is a distributed framework used to massively parallelize computationally

intensive tasks. It enjoys wide deployment in commercial cloud services such as Amazon Web

Services, Microsoft Azure, and Google Cloud, and is extensively used to parallelize a broad array

of data-intensive algorithms [3, 4, 5, 6, 7]. Expressing algorithms in map-reduce also allows fast

deployment at a massive scale: any algorithm expressed in map-reduce operations can be quickly

implemented and distributed on a commercial cluster via existing programming frameworks [1, 2, 8].

Consider a data structure D ∈ XN comprising N elements di ∈ X , i ∈ [N ], for some

domain X . A map operation over D applies a function to every element of the data structure. That

is, given f : X → X ′, the operation D′ = D.map(f) creates a data structure D′ in which every

element di, i ∈ [N ], is replaced with f(di). A reduce operation performs an aggregation over the
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data structure, e.g., computing the sum of the data structure’s elements. Formally, let ⊕ be a binary

operator ⊕ : X × X → X that is commutative and associative, i.e.,

x⊕ y = y ⊕ x, and ((x⊕ y)⊕ z) = (x⊕ (y ⊕ z)).

Then, D.reduce(⊕) iteratively applies the binary operator ⊕ on D, returning⊕
i∈[N ]

di = d1 ⊕ . . .⊕ dN .

Examples of commutative, associative operators ⊕ include addition (+), the min and max operators,

binary AND, OR, and XOR, etc.

Both map and reduce operations are “embarrassingly parallel”. Presuming that the data

structure D is distributed over P processors, a map can be executed without any communication

among processors, other than the one required to broadcast the code that executes f . Such broadcasts

require only logP rounds and the transmission of P − 1 messages, when the P processors are

connected in a hypercube network; the same is true for reduce operations [52]. There exist

several computational frameworks, including Hadoop [2] and Spark [8], that readily implement and

parallelize map-reduce operations. Hence, expressing an algorithm like FW in terms of map and

reduce operations allows us to (a) parallelize the algorithm in a straightforward manner, and (b)

leverage these existing frameworks to quickly implement and deploy FW at scale.

We opted to implement our distributed algorithm in the map-reduce framework. The first

reason is that its implementations such as Hadoop [2] or Spark [8] are readily available on commer-

cially used clusters. The second reason is that map-reduce implementations allow programming in

high-level languages, e.g., Python, which are easy to program with. Code in these high-level lan-

guages can be written in a compact and concise fashion. In particular, we implement our distributed

FW algorithm over Spark [8], which is an open-source implementation of map-reduce well-suited

for parallelizing iterative machine learning algorithms: this is because Spark caches the results on

RAM, so that they can be used in the next iteration.

2.4.2 Message Passing Interface (MPI)

Message Passing Interface (MPI) is a standard for message passing libraries aimed at

running programs on HPC platforms, e.g., clusters of computers. The standard defines syntax and

semantics of a set of library routines for different programming languages such as C, C++, or

python. MPI is the dominant framework used in HPC applications [53]. MPI provides topology,
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communication, and synchronization between a set of processes: each process is usually mapped

to a processor. MPI uses objects called communicators to determine which subset of processes

may communicate with each other. MPI provides both point-to-point and collective communication

routines.

Point-to-point routines are used for communication between two specific processes. For

example, MPI Send allows a specified process to send a message to another specified process.

Correspondingly, MPI Recieve lets a specified process to receive a message from another specified

process. Collective routines involve communication between all processes in a communicator.

Examples of collective routines are MPI Bcast, MPI Scatter, MPI Reduce, or MPI Allreduce.

MPI Bcast sends data from a specified process to all other processes. MPI Scatter distributes

data from a stipulated process between all of the processes. MPI Reduce, similar to reduce in the

map-reduce framework, aggregates over data held by different processes. MPI Allreduce performs

a reduction over the data and then broadcasts the result to every processor; it is a MPI Reduce

followed by MPI Bcast.

Map-reduce has several advantages over MPI. First, map-reduce is readily available on

commercial clusters, e.g., Amazon Web Services, Microsoft Azure, and Google Cloud. Second,

programming in the map-reduce framework is much easier: implementation in MPI is done on lower-

level languages, moreover, it requires explicit specifications of communication types as well as of the

processors that need to communicate. On the other hand, MPI allows for both point-to-point routines

for communication between two specific processors and more sophisticated collective operations

such as MPI Allreduce.
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Chapter 3

Frank-Wolfe via Map-Reduce

3.1 Gradient Computation through Common Information

In this section, we identify two properties of function F under which FW over the simplex

D0 admits a distributed implementation through map-reduce. Intuitively, our approach exploits an

additional structure exhibited by several important practical problems: the objective function F often

depends on the variables θ as well as a dataset, given as input to the problem. We represent this

dataset through a matrix X = [xi]i∈[N ] ∈ RN×d whose rows are vectors xi ∈ Rd, i ∈ [N ]. The

dataset can be large, as N � 1; as such, X may be horizontally (i.e., row-wise) partitioned over

multiple processors. Note here that the dataset size (N ) equals the number of variables in F .

We assume that the dependence of F to the dataset X is governed by two properties. The

first property asserts that the partial derivative ∂F
∂θi

for any i ∈ [N ] depends on (a) the variable θi, (b)

a datapoint xi in the dataset, as well as (c) some common information h. This common information,

not depending on i, fully abstracts any additional effect that θ and X may have on partial derivative
∂F
∂θi

. Our second property asserts that this common information is easy to update: as variables θk

are adapted according to the FW algorithm (2.14), the corresponding common information h can

be re-computed efficiently, through a computation that does not depend on N . More formally, we

assume that the following two properties hold:

Property 1 There exists a matrix X = [xi]i∈[N ] ∈ RN×d, whose rows are vectors xi ∈ Rd, i ∈ [N ],

such that for all i ∈ [N ]:

∂F (θ)

∂θi
= G(h(X; θ), xi, θi), (3.1)

for some h : RN×d × RN → Rm, and G : Rm × Rd × R→ R, where m, d� N .
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We refer to h as the common information and to G as the gradient function. When X ∈ Rd×N is

partitioned over multiple processors, Prop. 1 implies that a processor having access to θi, xi, and

the common information h(X; θ) can compute the partial derivative ∂F
∂θi

. No further information

on other variables or datapoints is required other than h. Moreover, computing G is efficient, as its

inputs are variables of size m, d� N .

Recall from (2.14) and (2.19) that, when the constraint set is the simplex, adaptations to

θk take the form:

θk+1 = (1− γk)θk + γei∗ , where i∗ ∈ arg min
i∈[N ]

∂F (θk)

∂θi
.

Our second property asserts that when θk is adapted thusly, the common information h can be easily

updated, rather than re-computed from scratch from X and θk+1:

Property 2 Let D = D0. Given h(X; θk), the common information at iteration k of the FW algo-

rithm, the common information h(X; θk+1) at iteration k + 1 is:

h(X; θk+1) = H(h(X; θk), xi∗ , θ
k
i∗ , γ

k), (3.2)

for some H : Rm × Rd × R× R→ Rm, where i∗ ∈ arg mini∈[N ]
∂F (θk)
∂θi

.

Prop. 2, therefore, implies that a machine having access to xi∗ , θki∗ , γ
k, and the common information

h(X; θk) in the last iteration can compute the new common information h(X; θk+1). Again, no

additional knowledge of X or θk is required. Moreover, similar to the computation of G in Prop. 1,

this computation is efficient, as it again only depends on variables of size m, d� N . As we will see,

in establishing that Prop. 2 holds for different problems, we leverage the sparsity of sk at iteration

k ∈ N, as induced by (2.19): the fact that θk is interpolated with vector ei∗ , containing only a single

non-zero coordinate, is precisely the reason why the common information can be updated efficiently.

Example: For the sake of concreteness, we give an example of an optimization problem over the

simplex that satisfies Properties 1 and 2, namely, CONVEXAPPROXIMATION; additional examples

are presented in Section 4.1. Given a point p ∈ Rd and N vectors xi ∈ Rd, i ∈ [N ], the goal of

CONVEXAPPROXIMATION is to find the projection of p on the convex hull of set {xi | i ∈ [N ]}.
This can be formulated as:

CONVEXAPPROXIMATION

Minimize F (θ) = ‖XT θ − p‖22 (3.3a)

subj. to: θ ∈ D0, (3.3b)
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where X = [xi]i∈[N ] ∈ RN×d. CONVEXAPPROXIMATION satisfies Prop. 1 as

∂F (θ)

∂θi
= 2xTi (XT θ − p) = G(h(X; θ), xi) for all i ∈ [N ],

where common information h : RN×d × RN → Rd is

h(X; θ) = XT θ − p, (3.4)

and gradient function G : Rd × Rd → R is

G(h, x) = 2xTh.

Prop. 1 thus holds when d� N . Prop. 2 also holds because, under (2.14) and (2.19), the common

information at step k + 1 is:

h(X; θk+1) = (1− γk)h(X; θk) + γk(xi∗ − p)

= H(h(X; θk), xi∗ , γ
k),

where H : Rd × Rd × R→ Rd is given by

H(h, x, γ)=(1− γ)h+γ(x− p).

Note that, in this problem, m = d� N . Moreover, given their arguments, functions G and H can

be computed in O(d) time (i.e., their complexity does not depend on N � 1).

3.2 A Serial Algorithm

Before describing our parallel version of FW, we first discuss how it can be implemented

serially when Properties 1 and 2 hold. The main steps are outlined in Alg. 2. Beyond picking an

initial feasible point, the algorithm computes the initial value of the common information h. At

each iteration of the for loop, the algorithm computes the gradient∇F using the present common

information, and updates both θk and the common information h to be used in the next step. It is easy

to see that all steps in the main loop of Alg. 2 that involve computations depending on N (namely,

Lines 5–10) can be parallelized through map-reduce operations, when X and θ are distributed over

multiple processors. We describe this in detail in the next section; crucially, the adaptation of the

common information h (Line 11) does not depend on N , and can, therefore, be performed efficiently

in one processor.
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Algorithm 2 SERIAL FW UNDER PROPERTIES 1 AND 2
1: Pick θ0 ∈ D
2: h := h(X; θ0)

3: k := 0

4: repeat

5: for each i ∈ [N ] do

6: zi := G(h, xi, θi)

7: end for

8: Find i∗ := arg mini∈[N ] zi

9: gap := (θk − ei∗ )>z

10: θk+1 := (1− γk)θk + γkei∗

11: h := H(h, xi∗ , θ
k
i∗ , γ

k).

12: k := k + 1

13: until gap < ε

We note here that exploiting Properties 1 and 2 has efficiency advantages even in serial

execution. In general, the complexity of computing the gradient ∇F as a function of θ ∈ RN may

be quadratic in N , or higher, as each partial derivative ∂F
∂θi

, i ∈ [N ], is a function of N variables.

Instead, Properties 1 and 2 imply that the complexity of computing the gradient∇F at each iteration

of (2.14) is O(N): this is the complexity when the common information is adapted through H and

used to compute new partial derivatives through the gradient function G. For example, in the case

of CONVEXAPPROXIMATION, the complexity is O(Nd). As we show in Section 5.2, this leads to

a significant speedup, allowing Alg. 2 to outperform interior-point methods even when executed

serially.

3.3 Parallelization Through Map-Reduce

We now outline how to parallelize Alg. 2 through map-reduce operations. The algorithm

is summarized in Alg. 3, where we use the notation x 7→ f(x) and x, y 7→ g(x, y), to indicate a

unitary function f and a binary function g, respectively. The main data structure D contains tuples of

the form (i, xi, θ
k
i ), for i ∈ [N ], partitioned and distributed over P processors. A master processor

executes the map-reduce code in Alg. 3, keeping track of the common information h and the duality

gap at each step. A reduce returns the computed value to the master, while a map constructs a new

data structure distributed over the P processors.

Each step in the main loop of Alg. 2 has a corresponding map-reduce implementation in

Alg. 3. In the main loop, a simple map using function G appends zi = ∂F (`k)
∂θi

to every tuple in D,

yielding D′ (Line 7 in Alg. 3). A reduce on D′ (Line 8) computes a tuple (i∗, xi∗ , θi∗ , zi∗), for
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Algorithm 3 FW VIA MAP-REDUCE

1: Pick θ0 ∈ D
2: Compute h := h(X; θ0)

3: Let D := {(i, xi, θ0i )}i∈[N ]

4: Distribute D over P processors

5: k := 0

6: repeat

7: D′ = D.map
(

(i, xi, θi) 7→ (i, xi, θi, G(h, xi, θi)
)

8: (i∗,xi∗ ,θi∗ ,zi∗ ) := D′.reduce

(i,xi,θi,zi),(i
′,xi′ ,θi′ ,zi′ ) 7→

(i,xi,θi,zi) if zi<zi′

(i′,xi′ ,θi′ ,zi′ )if zi≥zi′


9: gap := D′.map

(i,xi,θi,zi) 7→

θi · zi if i 6= i∗

(θi − 1) · zi if i = i∗

 .reduce(+)

10: D := D.map

(i, xi, θi) 7→

(i,xi,(1− γk)θi) if i 6= i∗

(i,xi,(1− γk)θi + γk) if i = i∗


11: h := H(h, xi∗ , θi∗ , γ

k).

12: k := k + 1

13: until gap < ε

i∗ ∈ arg mini∈[N ] zi. Similarly, a map and a reduce on D′ (a summation) yields the duality gap

(Line 9), while a map adapts the present solution θ in data structure D (Line 10). Finally, the common

information h is adapted centrally at the master node (Line 11), as in Alg. 2.

Message and Parallel Complexity. The reduce in Line 8 requires logP parallel rounds, involving

P − 1 messages of size O(d) [52]. Computing the gradient in parallel through a map in Line 7

requires knowledge of the common information at each processor. Hence, in the beginning of each

iteration, h is broadcast to the P processors over which D is distributed: this again requires in logP

rounds and P − 1 messages. Note that the corresponding message has size O(m), that does not

depend on N . Similarly, the reductions in Lines 9 and 10 require broadcasting i∗, which has size

O(1). In practice, such variables are typically shipped to the processors by the master along with the

code of the function or operator to be executed by the corresponding map or reduce. The operations

in Lines 7–10 thus require logP parallel rounds and the transmission of O(P ) messages of size

O(m+ d).

3.4 Selecting the step size.

Our exposition so far assumes that the step size γk is computed at the master node before

updating D and h. This is certainly the case if, e.g., γk = 2
k+2 , but it does not readily follow when

the line minimization rule (2.16) is used. Nevertheless, all problems we consider here, including
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CONVEXAPPROXIMATION, satisfy an additional property that ensures that (2.16) can also be

computed efficiently in a centralized fashion:

Property 3 There exists an F̂ : Rm → R such that F (θ) = F̂ (h(X; θ)) .

Prop. 3 implies that line minimization (2.16) at iteration k is:

γk = arg min
γ∈[0,1]

F̂
(
h(X; (1− γ)θk + γei∗)

)
. (3.5)

The argument of F̂ is the updated common information hk+1 under step size γ. Hence, using Prop. 2,

Eq. (3.5) becomes:

γk = arg min
γ∈[0,1]

F̂
(
H(h, xi∗ , θ

k
i∗ , γ)

)
, (3.6)

where h is the present common information. As F is convex in θk, it is also convex in γ, so (3.6)

is also a convex optimization problem. Crucially, (3.6) depends on the full dataset X and the full

variable θ only through h. Therefore, the master processor (having access to xi∗ , θki∗ , γ, and h) can

find the step size via standard convex optimization techniques solving (3.6). In fact, for several

of the problems we consider here, line minimization has a closed form solution; for example, for

CONVEXAPPROXIMATION, the optimal step size is given by:

γk =
h>h− (xi∗ − p)>h

(xi∗ − p)>(xi∗ − p) + h>h− 2(xi∗ − p)>h
.

Though all problems we study, listed in Table 4.1, satisfy Prop. 1, 2, as well as 3, we stress again that

Prop. 3 is not strictly necessary to parallelize FW, as a parallel implementation can always resort to a

diminishing step size.
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Examples and Extensions

4.1 Examples

We provide several examples of problems that satisfy Prop. 1, 2, and 3; a summary is given

in Table 4.1.

Problems F (θ) m G compl. H compl.
Convex Approximation ‖Xθ − p‖22 d O(d) O(d)

Adaboost log
(∑d

j=1 exp(Ccjrj)
)

d O(d) O(d)

D-optimal Design − log detA(θ) d2 O(d2) O(d2)
A-optimal Design trace

(
A−1(θ)

)
2d2 O(d2) O(d2)

Table 4.1: Examples of problems satisfying Prop. 1–3.

Experimental Design: In experimental design, a learner wishes to regress a linear model β ∈ Rd

from input data (xi, yi) ∈ Rd × R, i ∈ [N ], where

yi = β>xi + εi,

for εi, i ∈ [N ], i.i.d. noise variables. The learner has access to features xi, i ∈ [N ], and wishes to

determine which labels yi to collect (i.e., which experiments to conduct) to accurately estimate β.

This problem can be posed as [23]:

min
θ∈D0

f

( N∑
i=1

θixix
>
i

)−1
 , (4.1)
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where θi indicates the portion of experiments conducted by the learner with feature xi. The quantity

A(X; θ) =
N∑
i=1

θixix
>
i

is the design matrix of the experiment. For brevity, we represent A(X; θ) as A(θ) below. Different

choices of f : Rd×d → R lead to different optimality criteria; we review two below.

D-Optimal Design: In D-Optimal design f is the log-determinant, and (4.1) becomes:

D-OPTIMALDESIGN

Minimize F (θ) = logdet

(
N∑
i=1

θixix
>
i

)−1

(4.2a)

subj. to: θ ∈ D0, (4.2b)

D-OPTIMALDESIGN satisfies Prop. 1 as:

∂F

∂θi
= −x>i A−1(θ)xi = G(h(X, θ), xi), for all i ∈ [N ],

where the common information h : RN×d × RN → Rd×d is

h(X; θ) = A−1(θ),

and the gradient function G : Rd×d × Rd → R, is given by

G(h, x) = −x>hx.

Hence, Prop. 1 holds when d2 � N . Using the Sherman-Morrison formula [54] we can show that

the common information at step k + 1 is:

A−1(θk+1) =
A−1(θk)

1− γ
−

γ

(1−γ)2
A−1(θk)xi∗x

>
i∗A
−1(θk)

1 + γ
1−γx

>
i∗A
−1(θk)xi∗

. (4.3)

As a result,

h(X; θk+1)= H(h(X, θk), xi∗ , γ),

where H : Rd×d × Rd × R→ Rd×d is:

H(h, x, γ)=
h

1− γ
−

γ

(1−γ)2
hxx>h

1 + γ
1−γx

>hx
. (4.4)

Therefore, Prop. 2 also holds. Note that, in this problem, m = d2 � N . Functions G and H include

only matrix-to-vector and vector-to-vector multiplications; hence, given their arguments, they can be

computed in O(d2) time.

A-Optimal Design: In A-Optimal design f is the trace:
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A-OPTIMALDESIGN

Minimize F (θ) = Tr
(
A−1(θ)

)
(4.5a)

subj. to: θ ∈ D0. (4.5b)

The partial derivative of the F can be written as:

∂F

∂θi
= −x>i A−2(θ)xi = G(h(X; θ), xi), for all i ∈ [N ].

where the common information h : RN×d × RN → Rd×d × Rd×d is

h(X; θ) = (h1, h2),

where

h1 = A−1(θ),

h2 = A−2(θ).

The gradient function G : Rd×d × Rd → R is

G((h1, h2), x) = −x>h2x.

Hence, Property 1 holds when d2 � N . The common information at step k+1 is
(
A−1(θk+1), A−2(θk+1)

)
.

The first term can be computed as in (4.3). The second term is the square of the first term; expanding

it gives a formula in terms of A−1(θk) and A−2(θk). More formally, the common information at

iteration k + 1 can be written as:

h(X; θk+1) = (hk+1
1 , hk+1

2 ) = H(h(X; θk), xi∗ , γ),

where

H((h1, h2), x, γ) = (H1(h1, x, γ), H2(h1, h2, x, γ)),

and function H1 is given by (4.4), while H2 : Rd×d × Rd×d × Rd × R→ Rd×d is:

H2(h1, h2, x, γ) =
h2

(1− γ)2
−

γ

(1−γ)3
h2xx

>h1

1 + γ
1−γx

>h1xi
−

γ

(1−γ)3
h1xx

>h2

1 + γ
1−γx

>h1
+

γ2

(1−γ)4
x>h2xh1xx

>h2

(1 + γ
1−γx

>h1x)2
.

This illustrates why common information includes both A−1(θk) and A−2(θk): adapting the latter

requires knowledge of both quantities. Note also that m = 2d2 � N . Functions G and H again
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only require matrix-to-vector and vector-to-vector multiplications and, hence, can be computed in

O(d2) time.

AdaBoost: Assume that N classifiers and ground-truth labels for d data points are given. The

classification result is represented by a binary matrix X ∈ {−1,+1}N×d, where xij is the label

generated by the i-th classifier for the j-th data point. The true classification labels are given by a

binary vector r ∈ {−1,+1}d. The goal of Adaboost is to find a linear combination of classifiers,

defined as:

c(X, θ) = X>θ,

such that the mismatch between the new classifiers and ground-truth labels is minimized. The

problem can be formulated as:

ADABOOST

Minimize F (θ) = log

 d∑
j=1

exp(−αcj(X, θ)rj)

 (4.6a)

subj. to: θ ∈ D0, (4.6b)

where rj and cj are, respectively, the j th element of the r and c vectors, and α ∈ R is a tunable

parameter. Again, (4.6) satisfies Prop. 1 as:

∂F (θ)

∂θi
= −x>i b = G(h(X; θ), xi), for all i ∈ [N ],

where b ∈ Rd is a vector, whose elements are

bj =
αrj exp (−αcjrj)∑d
i=1 exp(−αcjrj)

, for all j ∈ [d].

The common information, h : RN×d × RN → Rd is

h(X; θ) = [exp−αcjrj ]j∈[d] ,

and the gradient function G : Rd × Rd → R is

G(h, x) = x>ĥ,

where

ĥ =

[
αrjhj∑d
i=1 hi

]
j∈[d]

.
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Hence, Prop. 1 holds when d� N . Prop. 2 also holds because, under (2.14) and (2.19), the common

information at step k + 1 is

h(X; θk+1) = H(h(X, θk), xi∗ , γ),

where H : Rd × Rd × R→ Rd is given by

H(h, xi, γ) =
[
h

(1−γ)
j exp(−γαxjirj)

]
j∈[d]

.

In this problem, m = d� N and functions G and H can be computed in O(d) time.

Serial Solvers: All four problems in Table 4.1 are convex, and some admit specialized solvers.

A-OPTIMALDESIGN can be reduced to a semidefinite program, (see Sec. 7.5 of [23]), and solved as

an SDP. ADABOOST can be expressed as a geometric program (GP) [20], and CONVEXAPPROXIMA-

TION is a quadratic program (QP). D-OPTIMALDESIGN is a general convex optimization problem,

and can be solved by standard techniques such as, e.g., barrier methods. In Sec. 5.2 we compare FW

to the above specialized solvers, and we see that it outperforms them in all cases.

4.2 Extensions

Our proposed distributed Frank-Wolfe algorithm can be extended to a more general class

of problems, with constraints beyond the simplex.

`1−constraint: The `1 (or lasso) constraint ‖θ‖1 ≤ K appears in many optimization problems as

means of enforcing sparsity [55, 56]. For this constraint, adaptation (2.14b) becomes:

sk = σi∗ei∗ , where i∗ = arg max
i∈[N ]

∣∣∣∣ ∂f∂θi
∣∣∣∣ , (4.7)

and σi∗ = −Ksign( ∂f
∂θi∗

). Eq. (4.7) can be computed in parallel through a reduce. The adaptation

step of γk is slightly different from the simplex case, as we interpolate between θk a scaled basis

vector σi∗ei∗ .

As an example, consider the LASSO problem [56]:

min
θ:‖θ‖1≤K

‖X>θ − p‖22. (4.8)

Here, θ ∈ RN is the vector of weights, X ∈ RN×d is the matrix of N−dimensional features for d

datapoints, and p ∈ Rd is the observed outputs. Note that LASSO has exactly the same objective as

CONVEXAPPROXIMATION, so the common information from (3.4) is

h(X; θ) = XT θ − p.
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The common information can be updated as

h(X; θk+1) = (1− γk)h(X; θk) + γk(σi∗xi∗ − p),

i.e., it is a function of h(X; θk) and the usual “local” information at i∗, now including also σi∗ .

Atomic Norms: More generally, consider the problem

min
θ:‖θ‖A≤K

f(θ),

where ‖x‖A denotes the atomic norm: given a set of atoms A = {ai ∈ RN} the atomic norm is

defined as

‖x‖A = inf{t ≥ 0 : x ∈ tconv(A)},

where conv(A) is the convex hull of the atoms. Atomic norms are used to encourage solutions that

have a low-dimensional structure, modelled as a linear combination of only few atoms [57, 58, 59, 30].

Tewari et al. [30] propose an FW-like algorithm for this class of problems. In this algorithm, the step

4 of Alg. 1 is replaced by

sk = arg min
a∈A

a> · ∇F (θk). (4.9)

Then, the new solution is convex combination of the current solution and Ksk, similar to FW

Algorithm.

Our approach can be extended to problems of this form, where the set A comprises atoms

{±αiei}, where αi > 0 s are arbitrary scalars. Eq. (4.9) becomes sk = −αi∗sign( ∂f
∂θi∗

)ei∗ , where

i∗ = arg maxi∈[N ] |αi
∂f
∂θi
|. This can be implemented through a reduce, and adaptation is slightly

different from the simplex case as again sk is a scaled basis vector. An appropriate variant of Prop. 2,

should hold w.r.t. this adaptation step.
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Experimental Study

5.1 Implementation

We implemented Alg. 3 over Spark, an open-source cluster-computing framework [8].

Spark inherently supports map-reduce operations, and is well-suited for parallelizing iterative

algorithms; this is because results of map-reduce operations can be cached in RAM, over multiple

machines, and accessed in the next iteration of the algorithm [8].

Our FW implementation is generic, relying on an abstract class. A developer only needs

to implement three methods in this class: (a) the gradient function G, (b) the common information

function h, and (c) the common information adaptation function H . Once these functions are

implemented, our code takes care of executing Alg. 3 in its entirety, and distributes its execution over

a Spark cluster. Our implementation, which is publicly available,1 can thus be used to solve arbitrary

problems that satisfy Prop. 1 and 2, and quickly deploy and parallelize their execution over a Spark

cluster. We have also instantiated this class for the problems summarized in Table 4.1 and used it in

our experiments.

5.2 Experiments

5.2.1 Experiment Setup

Cluster. Our cluster comprises 8 worker machines, each with 56 Intel Xeon 2.6GHz CPU cores and

512GB of RAM, at a total capacity of 448 cores and 4TB of RAM. We deploy Spark over this cluster
1https://github.com/neu-spiral/FrankWolfe
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in standalone mode. In our experiments the level of parallelism is measured in terms of the number

of worker cores P , ranging from 1 to 350.

Algorithms. We solve Convex Approximation, Adaboost, D-Optimal Design, and A-Optimal Design

summarized in Table 4.1, as well as LASSO (c.f. Sec. 4.2). We implement both serial and parallel

solvers. First, we implement Serial FW (Alg. 2) in Python, setting γ using the line minimization

rule (2.16). In addition, we solve Convex Approximation, D-Optimal Design, A-Optimal Design,

and Adaboost using CVXOPT solvers, qp, cp, sdp, and gp, respectively. CVXOPT is a software

package for convex optimization based on the Python programming language.2 We implement the

distributed ADMM for LASSO problem, as described in Section 8.3 of [14]. We also implement our

parallel algorithm (Alg. 3) using our Spark generic implementation. We again set the step size using

the line minimization rule (2.16). We refer to this algorithm as Parallel FW. We also introduce two

stochastic parallel variants that subsample the gradient; we discuss these in Section 5.2.4.

Synthetic Data. For D-optimal Design, A-optimal Design, Convex Approximation, and LASSO, the

synthetic data has the form of a matrix X ∈ RN×d. The point p in Convex Approximation is a vector

p ∈ Rd. The elements of X and p are sampled independently from a uniform distribution in [0, 1].

For Adaboost, input data is given by a binary matrix X ∈ {−1,+1}N×d and ground-truth labels

are represented by a binary vector r ∈ {−1,+1}d. The elements of r are sampled independently

from a Bernoulli distribution with parameter 0.5. Then each row of X is generated from r as follows:

each element xij is equal to rj with probability 0.7, and it is equal to −rj with probability 0.3. For

LASSO, the observed outputs are denoted by a vector p ∈ Rd, which is generated as follows: a

sparse vector θ∗ ∈ RN is sampled from a uniform distribution in [0,1], s.t., only 1 percent of its

elements are non-zero. Then the vector p is synthesized as p = X>θ∗ + ε, where ε ∈ Rd is the

noise vector, and its elements are sampled from a uniform distribution in [0, 0.01]. We create three

synthetic datasets with different values of N and d, summarized in Tables 5.1–5.3.

Real Data. We also experiment with 4 real datasets, summarized in Table 5.4. The first dataset is

Movielens [60]. This includes 20,000,263 ratings for 27,278 movies generated by 138,493 users.

We have kept the top 500 most-rated movies, resulting in 413,304 ratings, rated by 137,768 users.

We have represented the data as a matrix X ∈ RN×d with N = 137768 and d = 500, so that xij

indicates the rating of user i for movie j. Missing entries are set to zero. The second dataset is

a high-energy physics dataset, HEPMASS [61]. The dataset has 106 data points and 28 features.
2cvxopt.org
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We represent it as a matrix with N = 106 and d = 28. The third dataset is the MSD dataset [61],

which comprises 515345 songs with 90 features. We represent it as a matrix with N = 515345

and d = 90. The fourth dataset is from Yahoo Webscope.3 It represents a snapshot of the Yahoo!

Music community’s preferences for various songs. We used the test section of the dataset, which

contains 18,231,790 ratings of 136,735 songs by over 1.8M users. We find the 100-dimensional

latent vectors via matrix factorization technique [62], using the parameters µ = 0.001 and λ = 0.001.

We represent the latent vectors corresponding to users as a matrix X ∈ RN×d with N = 1, 823, 179

(number of users) and d = 100. We refer to this dataset as YAHOO dataset. When solving Convex

Approximation problem for the YAHOO dataset, the vector p ∈ R100 is generated as follows. An

arbitrary point from the dataset xi is chosen, then it is corrupted by noise: p = xi + ε, where the

elements of ε ∈ R100 are sampled independently form a uniform distribution in [0, 0.1]. Finally, the

point xi is removed from the dataset.

Metrics. We use two metrics. The first is the objective F of each problem, whose evolution we track

as different algorithms progress. Our second metric is tε, the minimum time for the algorithm to

obtain a solution θ within an ε-neighborhood of the optimal solution F (θ∗). As we do not know

F (θ∗), we use F (θ)− g(θ) ≤ F (θ∗) instead. More formally:

tε = min
{
t : F (θ(t))

F (θ(t))−g(θ(t)) ≤ 1 + ε
}
, (5.1)

where θ(t) denotes the obtained solution at time t. As F (θ)− g(θ) ≤ F (θ∗), tε overestimates the

time to convergence.

5.2.2 Serial Execution

Our first experiment compares the Serial FW algorithm with the specialized interior point

solvers mentioned in Section 4.1 (i.e., cp, qp, sdp, and gp) for each of the problems in Table 4.1.

We use the small synthetic dataset (Dataset A) in Table 5.1.

In each execution, we keep track of the objective function F as a function of time elapsed.

Unlike FW, the interior-point methods do not generate feasible solutions at each iteration. Therefore,

we project the solutions at each iteration on the feasible set, and compute the objective F on the

projected solution. The time taken for the projection is not considered in time measurements; as

such, our plots underestimate the time taken by the interior-point algorithms.

Fig. 5.1 shows function values generated by the algorithms as a function of time. Serial

FW outperforms the interior-point methods, even when not accounting for projections. The reason is
3https://webscope.sandbox.yahoo.com
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Figure 5.1: Values of the objective function generated by the algorithms as a function of time over
Dataset A. We see that Serial FW converges faster than interior point methods.

that, in contrast to interior-point methods, the time complexity of computations at each iteration of

Serial FW is linearly dependent on N . As a result, when d� N , Serial FW is considerably faster,

even though it requires more iterations to converge. Note that the objective values generated by

interior-point methods are non-monotone, as these methods alternate between improving feasibility

and optimality.

5.2.3 Effect of Parallelism

To study parallelism, we first show results for two large-scale synthetic datasets: Dataset

B, a dataset with N = 20M and d = 100 (Table 5.2), and Dataset C with N = 100K and d = 1K

(Table 5.3). Fig. 5.2 shows tε as a function of the level of parallelism, measured in terms of the

number of cores P , for each of the two datasets. We normalize tε by its value at P = 70 and P = 16,

respectively. Figure 5.3 shows objective F , as a function of time for different levels of parallelism.

The speedup of Parallel FW execution time over Serial FW is shown in Table 5.5. Both

figures and the table show that increasing parallelism leads to significant speedups. For example,

using 350 compute cores, we can solve the 20M-variable instance of D-optimal Design in 79 minutes,

an operation that would take 165 hours when executed serially. For the input sizes used in these
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Problem N d algs
Conv. Approx. 5000 20 qp

Adaboost 5000 100 gp

D-opt. Design 5000 20 cp

A-opt. Design 5000 20 sdp

Table 5.1: Dataset A

Problem N d ε

Conv. Approx. 20M 100 0.02
Adaboost 20M 100 0.002

D-opt. Design 20M 100 0.09
A-opt. Design 20M 100 0.19

Table 5.2: Dataset B

Problem N d ε

Conv. Approx. 100000 1000 0.12
Adaboost 100000 1000 0.004

D-opt. Design 100000 1000 0.03
A-opt. Design 100000 1000 0.09

Table 5.3: Dataset C

Problem Dataset N d ε

D-opt. Design Movielens 137768 500 0.18
D-opt. Design HEPMASS 1M 38 0.04
D-opt. Design MSD 515345 90 0.01
D-opt. Design YAHOO 1,823,179 100 0.09
A-opt. Design YAHOO 1,823,179 100 0.17
Conv. Approx. YAHOO 1,823,178 100 0.03

Table 5.4: Real Datasets

Problem Dataset Speedup # of cores
Conv. Approx. Dataset C 42 128
Conv. Approx. Dataset B 98 350
Conv. Approx. YAHOO 78 210

Adaboost Dataset C 45 128
Adaboost Dataset B 133 350

D-opt. Design Dataset C 48 128
D-opt. Design Dataset B 126 350
D-opt. Design HEPMASS 35 64
D-opt. Design Movielens 33 64
D-opt. Design MSD 35 64
D-opt. Design YAHOO 93 210
A-opt. Design Dataset C 49 128
A-opt. Design Dataset B 102 350
A-opt. Design YAHOO 90 210

Table 5.5: A summary of speedups (over serial implementation) obtained by parallel FW for each
problem and dataset, along with the level of parallelism. Beyond this number of cores, no significant
speedup improvement is observed.
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Figure 5.2: The tε as a function of the level of parallelism, measured in terms of cores P . Fig. 5.2a
shows results on the 20M variable dataset (Table 5.2) while Fig. 5.2b shows results on the dataset
with d = 1000 (Table 5.3). We normalize tε by its value at the lowest level of parallelism (13134s,
27420s, 6573s, and 4447s, respectively, for each of the four problems in Fig. 5.2a and 487s, 486s,
62s, and 483s, respectively, in Fig. 5.2b). We see that increasing the level of parallelism speeds up
convergence.

experiments, the benefit of parallelism saturates beyond 210 cores and 64 cores, for Datasets B and

C, respectively. The reason is that for this input size, after increasing the level of parallelism beyond

these values, the cost of computing the gradient at each core becomes negligible. By comparing

Figures 5.3a and 5.3b with Figures 5.3c and Figure 5.3d, we see that Parallel FW converges much

faster for Convex Approximation and Adaboost. The reason is that the objective function in D-

Optimal Design and A-optimal Design does not have a bounded curvature; therefore, as mentioned

in Section 3, FW for these problems does not have a O( 1
k ) convergence rate.

Next, we move on to experiments on the real datasets, summarized in Table 5.4. For brevity,

we only report D-Optimal Design for Movielens, HEPMASS, and MSD datasets, and D-optimal

design, A-optimal Design, and Convex Approximation for the YAHOO dataset. Fig. 5.4 shows the

measured tε for different levels of parallelism. For each dataset, tε is normalized by the value of tε

for the lowest level of parallelism. Again, we see that we gain a significant speedup by parallelism.

5.2.4 Subsampling the Gradient

In this section, we study the effect of subsampling the gradient on the performance of FW.

We have seen that parallelism reduces the cost of computation of the gradients. An alternative is

to compute the gradient stochastically by subsampling only a few partial derivatives and using the

minimal in this sub-sampled set. This reduces the amount of computation occurring in each iteration.

Moreover, such a stochastic estimation of the gradient still guarantees convergence [40], albeit at a
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Figure 5.3: The objective F as a function of time over Dataset B. We see that increasing the level of
parallelism makes convergence faster. By comparing Figures 5.3a and 5.3b with Figures 5.3c and
5.3d, we see that FW for D-Optimal Design and A-Optimal Design converges slower.
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Figure 5.4: The summary of parallelism experiments on the real datasets. We normalize tε by
its value at the lowest level of parallelism (15247s, 3899s, and 4766s for Movielens, MSD, and
HEPMASS, respectively, in Fig. 5.4a, and 9888s, 7060s, and 1302s for D-optimal Design, A-optimal
Design, and Convex Approximation, respectively, in Fig 5.4b.
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slower rate. Therefore, subsampling decreases the computation time for each iteration; this has a

similar effect to increasing parallelism, without incurring additional communication overhead. In

contrast to increasing parallelism, however, subsampling may also increase the number of iterations

till convergence.

We consider two variants of subsampling. In Sampled FW, we compute each partial

derivative ∂F
∂θi

with probability p. Then, we find the minimum among the computed partial derivatives.

Note that this speeds derivative computations: at most p · N partial derivatives are computed, in

expectation. In Smoothened FW, we compute each partial derivative with probability p, but maintain

an exponentially-weighted moving average (EWMA) between the computed value and past values:

this estimate is used instead to compute the current minimum partial derivative.

We use Dataset C (Table 5.3) in this experiment: we solve the corresponding problems

using Sampled FW and Smoothened FW on 16 cores. The results are shown in Fig. 5.5. Values tε

are normalized by tε for p = 1. This makes experiments in Figures 5.5 and 5.2b comparable: each

core computes the same number of partial derivatives in expectation.

By comparing Figures 5.5 and 5.2b, we see that subsampling matches the benefits of

parallelism, at least for large p, for D-optimal and A-optimal design. In contrast, the benefits of

subsampling for Convex Approximation and AdaBoost are almost negligible. This is because Parallel

FW guarantees a O( 1
k ) convergence rate for these problems. As a result, though subsampling reduces

the cost of computation per iteration, the increase in number of iterations negates this advantage.

In fact, when p is in an ultra-low regime, e.g., p = 0.0005, Sampled FW converges extremely

slowly for all problems. Interestingly, Smoothened FW performs better in this case, ameliorating

the performance deterioration. This is most evident in Figures 5.5d and 5.5c, where tε for Convex

Approximation and AdaBoost is considerably smaller under Smoothened FW.

5.2.5 LASSO Experiment

To show the performance of our algorithm on the cases beyond simplex constrained

problems, we solve the LASSO problem (4.8). We compare our distributed FW with distributed

ADMM.

The input data is synthetic and with N = 100, 000 and d = 1000. First, we solve the

following problem:

min
θ

1

2
‖X>θ − p‖22 + ‖θ‖1,
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Figure 5.5: The measured tε under Sampled and Smoothened FW, over Dataset C. We normalize tε
by the measured tε for 16 cores, which is reported in Fig. 5.2. By comparing Figures 5.5a and 5.5c
with Fig. 5.2b, subsampling does not match the benefits of parallelism. In an ultra-low regime, e.g.,
p = 0.0005 convergence is very slow. Smoothened FW can enhance the performance in this case.
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Figure 5.6: The comparison between ADMM and our distributed Frank-Wolfe algorithm. Each
algorithm uses 400 cores.

with distributed ADMM using 400 cores and for different values of ρ, which is a parameter controlling

convergence (see Section 8.3 of [14]). We then solve the LASSO with our Distributed FW algorithm,

setting K equal to the `1 norm of the solution obtained by ADMM. For a fair comparison, we use

400 cores. Fig. 5.6 shows the value of the squared loss 1
2‖Xθ − p‖

2
2 as a function of time for FW

and ADMM. As we see, FW outperforms ADMM.
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Conclusion

We establish structural properties under which FW admits a highly scalable parallel

implementation via map-reduce. We show that problems distributed by our algorithm achieve

significant speedups. In particular, by using 350 cores we are able to solve a problem with 20 million

variables in 79 minutes, while the serial implementation takes 165 hours. Moreover, we show that

our results extend beyond the simplex constraint. For instance, our distributed FW algorithm can be

applied to problems with the popular and widely-used `1-norm constraint.

The Frank-Wolfe algorithm is related to approximate algorithms for so-called submod-

ular maximization problems. Submodularity is a structural property associated with set functions.

Submodularity captures the notion of diminishing returns or decreasing marginal utilities [63]; this

makes it a suitable objective in computer science or economics to represent subset evaluations of, e.g,

a set of utilities [63]. In particular, maximizing submodular functions subject to matroid constraints

has numerous applications in the combinatorial optimization domain, such as variable selection

[64], dictionary learning [65, 66], document summarization [67, 68], etc. Maximizing submodular

functions subject to matroid constraints are known as the convex optimization counterpart in the

combinatorial optimization domain [63]: though NP-hard, these problems can be solved with ap-

proximate guarantees [69, 70, 71]. A greedy algorithm [70] produces a solution that is guaranteed to

be within 1/2 ratio of the optimal solution. The so-called continuous greedy algorithm improved

this ratio to (1− 1/e) [72, 73]; moreover, this ratio cannot be improved further for polynomial-time

algorithms [74]. The continuous greedy algorithm is in fact a variant of FW. It maximizes a multi-

linear relaxation [69] of the original submodular maximization problem. Through this connection,

FW has important applications in solving these combinatorial optimization problems. Parallelizing

this variant of FW, which solves generic submodular optimization problems with guarantees is an
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important direction as a future work.

Though submodularity is conventionally defined for set functions, its definition has also

been extended for continuous functions [75, 76]. More recently, Bian et al. [71] defined DR-

submodular functions, which are a subset of the continuous submodular functions. The scope of the

DR-submodular functions comprises a subset of convex functions, a subset of concave functions, and

a subset of functions that are neither convex nor concave. Moreover, they show that many interesting

computer science problems such as, maximzing linear extensions, e.g., the Lovasz extension [77],

of submodular set functions, non-convex/non-concave quadratic programming, optimal budget

allocation, etc, have DR-submodular objectives. They also prove that a FW variant, which is similar

to the continuous greedy algorithm, maximizes the monotone DR-submodular functions again with

the (1 − 1/e) ratio within the optimal solution. In other words, this FW variant, with guarantees,

solves a class of generic problems with diverse applications, which interestingly includes non-convex

optimization problems. Therefore, another useful area as future work is parallelizing this FW variant:

this allows to solve large-scale monotone DR-submodular maximization problems in a moderate

time.
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[45] R. Ñanculef, E. Frandi, C. Sartori, and H. Allende, “A novel frank–wolfe algorithm. analysis

and applications to large-scale svm training,” Information Sciences, vol. 285, pp. 66–99, 2014.

[46] S. Damla Ahipasaoglu, P. Sun, and M. J. Todd, “Linear convergence of a modified frank–wolfe

algorithm for computing minimum-volume enclosing ellipsoids,” Optimisation Methods and

Software, vol. 23, no. 1, pp. 5–19, 2008.

[47] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent using predictive variance

reduction,” in Advances in neural information processing systems, 2013, pp. 315–323.

[48] M. Mahdavi, L. Zhang, and R. Jin, “Mixed optimization for smooth functions,” in Advances in

Neural Information Processing Systems, 2013, pp. 674–682.

49



BIBLIOGRAPHY

[49] S. Lacoste-Julien, M. Jaggi, M. Schmidt, and P. Pletscher, “Block-coordinate frank-wolfe

optimization for structural svms,” in Proceedings of ICML, 2013.

[50] A. Osokin, J.-B. Alayrac, I. Lukasewitz, P. K. Dokania, and S. Lacoste-Julien, “Minding the

Gaps for Block Frank-Wolfe Optimization of Structured SVMs,” in ICML, 2016.

[51] N. L. Tran, T. Peel, and S. Skhiri, “Distributed frank-wolfe under pipelined stale synchronous

parallelism,” in 2015 IEEE International Conference on Big Data (Big Data), 2015.

[52] F. T. Leighton, Introduction to parallel algorithms and architectures: Trees Hypercubes.

Elsevier, 2014.

[53] S. Sur, M. J. Koop, and D. K. Panda, “High-performance and scalable mpi over infiniband

with reduced memory usage: an in-depth performance analysis,” in Proceedings of the 2006

ACM/IEEE conference on Supercomputing. ACM, 2006, p. 105.

[54] J. Sherman and W. J. Morrison, “Adjustment of an inverse matrix corresponding to a change

in one element of a given matrix,” The Annals of Mathematical Statistics, vol. 21, no. 1, pp.

124–127, 1950.

[55] A. Y. Ng, “Feature selection, l 1 vs. l 2 regularization, and rotational invariance,” in ICML,

2004.

[56] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal Statistical

Society. Series B (Methodological), pp. 267–288, 1996.

[57] P. Shah, B. N. Bhaskar, G. Tang, and B. Recht, “Linear system identification via atomic norm

regularization,” in CDC, 2012.

[58] S. Chen and A. Banerjee, “Structured estimation with atomic norms: General bounds and

applications,” in NIPS, 2015.

[59] V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky, “The convex geometry of linear

inverse problems,” Foundations of Computational Mathematics, vol. 12, no. 6, pp. 805–849,

2012.

[60] F. M. Harper and J. A. Konstan, “The movielens datasets: History and context,” ACM Trans.

Interact. Intell. Syst., vol. 5, no. 4, pp. 19:1–19:19, Dec. 2015.

50



BIBLIOGRAPHY

[61] M. Lichman, “UCI machine learning repository,” 2013.

[62] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for recommender systems,”

Computer, vol. 42, no. 8, 2009.

[63] P. R. Goundan and A. S. Schulz, “Revisiting the greedy approach to submodular set function

maximization,” Optimization online, pp. 1–25, 2007.

[64] A. Krause and C. E. Guestrin, “Near-optimal nonmyopic value of information in graphical

models,” arXiv preprint arXiv:1207.1394, 2012.

[65] A. Krause and V. Cevher, “Submodular dictionary selection for sparse representation,” in

Proceedings of the 27th International Conference on Machine Learning (ICML-10), 2010, pp.

567–574.

[66] A. Das and D. Kempe, “Submodular meets spectral: Greedy algorithms for subset selection,

sparse approximation and dictionary selection,” arXiv preprint arXiv:1102.3975, 2011.

[67] H. Lin and J. Bilmes, “A class of submodular functions for document summarization,” in

Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:

Human Language Technologies-Volume 1. Association for Computational Linguistics, 2011,

pp. 510–520.

[68] B. Mirzasoleiman, A. Karbasi, R. Sarkar, and A. Krause, “Distributed submodular maximization:

Identifying representative elements in massive data,” in Advances in Neural Information

Processing Systems, 2013, pp. 2049–2057.

[69] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák, “Maximizing a submodular set function
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