
Distributing Frank-Wolfe via Map-Reduce∗

Armin Moharrer and Stratis Ioannidis
Northeastern University

amoharrer@ece.neu.edu, ioannidis@ece.neu.edu

Abstract
We identify structural properties under which a
convex optimization over the simplex can be mas-
sively parallelized via map-reduce operations using
the Frank-Wolfe (FW) algorithm. A broad class
of problems, e.g., Convex Approximation, Exper-
imental Designs, and Adaboost, can be tackled this
way. We implement FW over Apache Spark, and
solve problems with 20 million variables using 350
cores in 79 minutes; the same operation takes 165
hours when executed serially.

1 Introduction
Map-reduce [Dean and Ghemawat, 2008; Bialecki et al.,
2005] is a distributed framework used to massively parallelize
computationally intensive tasks. It enjoys wide deployment
in commercial cloud services such as Amazon Web Services,
Microsoft Azure, and Google Cloud, and is extensively used
to parallelize a broad array of data-intensive algorithms. Ex-
pressing algorithms in map-reduce also allows fast deploy-
ment at a massive scale: these algorithms can be quickly im-
plemented and distributed on a commercial cluster via exist-
ing programming frameworks [Dean and Ghemawat, 2008;
Bialecki et al., 2005; Zaharia et al., 2010].

In this work, we study optimization problems of the form
minθ∈D0 F(θ), where F : RN → R is a convex, differentiable
function, and

D0 ≡
{

θ ∈ RN
+ : ∑

N
i=1 θi = 1

}
(1)

is the N-dimensional simplex. Several important problems
in AI and machine learning, including experimental design,
training Support Vector Machines (SVM), Adaboost, and
projection to a convex hull indeed take this form [Clarkson,
2010; Bellet et al., 2015; Boyd and Vandenberghe, 2004]. We
are particularly interested in cases where (a) N � 1, i.e., the
problem is high-dimensional, and, (b) F cannot be decom-
posed into a sum of several differential functions.

It is well known [Clarkson, 2010; Jaggi, 2013] that prob-
lems with simplex constraints admit an efficient implementa-
tion through the Frank-Wolfe (FW) algorithm, also known as
∗This extended abstract is an abridged version of an ICDM 2017

paper by the same authors.

the conditional gradient algorithm [Frank and Wolfe, 1956].
Our main contribution is to identify and formalize a set of
conditions under which solving such problems through FW
admits a massively parallel implementation via map-reduce.
We show that several important optimization problems, in-
cluding experimental design, Adaboost, and projection to a
convex hull satisfy the aforementioned conditions. We im-
plement our distributed FW algorithm on Spark [Zaharia et
al., 2010], an engine for large-scale distributed data process-
ing. Our implementation is generic: a developer using our
code needs to only implement a few problem-specific com-
putational primitives; our code handles execution over a clus-
ter. Finally, we extensively evaluate our Spark implementa-
tion over large synthetic and real-life datasets, illustrating the
speedup and scalability properties of our algorithm. For ex-
ample, using 350 compute cores, we can solve problems of 20
million variables using 350 cores in 79 minutes, an operation
that would take 165 hours when executed serially.
Related Work. Frank-Wolfe [Frank and Wolfe, 1956] and its
variants have attracted interest recently due to the algorithm’s
numerous computational advantages [Dudik et al., 2012;
Hazan and Kale, 2012; Ying and Li, 2012; Joulin et al., 2014;
Clarkson, 2010; Jaggi, 2013]. [Bellet et al., 2015] pro-
pose a distributed version of FW for objectives of the form
F(θ) = g(Aθ), for some A ∈ Rd×N , where d � N. [Tran et
al., 2015] extend the distributed algorithm of [Bellet et al.,
2015] under an asynchronous computation model. We (a)
consider a broader class of problems, that do not abide by
the structure presumed by Bellet et al. or Tran et al. , and (b)
establish properties under which FW can be explicitly par-
allelized through map-reduce rather than the message pass-
ing environment studied by Bellet et al. This allows us to
leverage commercial map-reduce frameworks to readily im-
plement and deploy parallel FW on a cluster.

2 Background
Frank-Wolfe Algorithm. The FW algorithm [Frank and
Wolfe, 1956] solves problems of the form minθ∈D F(θ),
where F : RN → R is a convex function and D is a convex
compact subset of RN . It starts from a feasible θ 0 ∈ D and
proceeds as follows:

sk = arg mins∈D s> ·∇F(θ k), (2a)

θ
k+1 = (1− γ

k)θ k + γ
ksk, (2b)

for k ∈N, where γk ∈ [0,1] is a step size. At each iteration k ∈
N, FW finds a feasible point sk minimizing the inner product
with the current gradient ∇F(θ k), and interpolates between
this point and the present solution. Note that θ k+1 ∈ D , as
a convex combination of θ k,sk ∈D ; therefore, the algorithm
maintains feasibility throughout its execution. Convergence
is typically determined via the duality gap [Jaggi, 2013] at
iteration k:

g(θ k)≡max
s∈D

(θ k− s)>∇F(θ k)
(2a)
= (θ k− sk)T

∇F(θ k), (3)

which upper bounds the objective value error at step k. The
step size can be diminishing, e.g., γk = 2

k+2 , or set through
line minimization, i.e.:

γ
k = arg minγ∈[0,1] F

(
(1− γ)θ k + γsk

)
. (4)

In both cases, convergence to an optimal solution occurs at an
O(1

k) rate for objectives with bounded curvature [Frank and
Wolfe, 1956; Jaggi, 2013].
Frank-Wolfe Over the Simplex. We focus on FW for the
special case where the feasible set D = D0, given by (1).
Then, the linear optimization in (2a) has a simple solution:
it reduces to finding the minimum element of the gradient
∇F(θ k). Formally, for [N] ≡ {1,2, . . . ,N}, and {ei}i∈[N] the
standard basis of RN , (2a) reduces to:

sk = ei∗ , where i∗ ∈ arg mini∈[N]
∂F(θ k)

∂θi
. (5)

Map-Reduce Framework. Consider a data structure D ∈
X N comprising N elements di ∈X , i ∈ [N], for some do-
main X . A map operation over D applies a function to every
element of the data structure. That is, given f : X →X ′, the
operation D′ = D.map(f) creates a data structure D′ in which
every element di, i ∈ [N], is replaced with f (di). A reduce
operation performs an aggregation over the data structure,
e.g., computing the sum of the data structure’s elements. For-
mally, let ⊕ be a binary operator ⊕ : X ×X →X that is
commutative and associative, i.e.,

x⊕ y = y⊕ x, and ((x⊕ y)⊕ z) = (x⊕ (y⊕ z)).

Then, D.reduce(⊕) iteratively applies the binary operator ⊕
on D, returning

⊕
i∈[N] di = d1⊕ . . .⊕dN . Examples of com-

mutative, associative operators ⊕ include addition (+), the
min and max operators, binary AND, OR, and XOR, etc.

Both map and reduce operations are “embarrassingly par-
allel”. Presuming that the data structure D is distributed
over P processors, a map can be executed without any com-
munication among processors, other than the one required
to broadcast the code that executes f . Such broadcasts re-
quire only logP rounds and the transmission of P− 1 mes-
sages, when the P processors are connected in a hypercube
network; the same is true for reduce operations [Leighton,
2014]. There exist several computational frameworks, includ-
ing Hadoop [Bialecki et al., 2005] and Spark [Zaharia et al.,
2010], that readily implement and parallelize map-reduce op-
erations. Hence, expressing an algorithm like FW in terms
of map and reduce operations allows us to (a) parallelize the
algorithm in a straightforward manner, and (b) leverage these
existing frameworks to quickly implement and deploy FW at
scale.

3 Frank-Wolfe via Map-Reduce
Gradient Computation through Common Information. In
this section, we identify two properties of function F under
which FW over the simplex D0 admits a distributed imple-
mentation through map-reduce. Our approach exploits an ad-
ditional structure often exhibited in practice: the objective
F depends on the variables θ as well as a dataset, given
as a problem input. We represent this dataset as a matrix
X = [xi]i∈[N] ∈ RN×d whose rows are vectors xi ∈ Rd , i ∈ [N].
The dataset is large, i.e., N � 1, and X may be horizontally
(i.e., row-wise) partitioned over multiple processors.

We assume that the dependence of F to the dataset X is
governed by two properties. The first property asserts that
the partial derivative ∂F

∂θi
for any i ∈ [N] depends on (a) the

variable θi, (b) a datapoint xi in the dataset, as well as (c)
some common information h, not depending on i: the latter
abstracts the effect that θ and X have on ∂F

∂θi
. Our second

property asserts that this common information is easy to up-
date: as variables θ k are adapted according to the FW algo-
rithm (2), the corresponding common information h can be
re-computed efficiently, through a computation that does not
depend on N. More formally, we assume that the following
two properties hold:

Property 1 There exists a matrix X = [xi]i∈[N] ∈ RN×d ,
whose rows are vectors xi ∈ Rd , i ∈ [N], s.t. for all i ∈ [N]:
∂F(θ)

∂θi
= G(h(X ;θ),xi,θi), for some h : RN×d ×RN → Rm,

and G : Rm×Rd×R→ R, where m,d� N.

We refer to h as the common information and to G as the gra-
dient function. When X ∈ RN×d is partitioned over multiple
processors, Prop. 1 implies that a processor having access to
θi, xi, and the common information h(X ;θ) can compute the
partial derivative ∂F

∂θi
. No further information on other vari-

ables or datapoints is required other than h. Computing G is
efficient, as its inputs have size m,d� N.

Recall from (2) and (5) that, when the constraint set is the
simplex, adaptations to θ k take the form:

θ k+1 = (1− γk)θ k + γei∗ , where i∗ ∈ arg mini∈[N]
∂F(θ k)

∂θi
.

Our second property asserts that when θ k is adapted thusly,
the common information h can be easily updated, rather than
re-computed from scratch from X and θ k+1:

Property 2 Let D = D0. Given h(X ;θ k), the common in-
formation at iteration k of the FW algorithm, the common
information h(X ;θ k+1) at iteration k + 1 is: h(X ;θ k+1) =
H(h(X ;θ k),xi∗ ,θ

k
i∗ ,γ

k), for some H :Rm×Rd×R×R→Rm,

where i∗ ∈ arg mini∈[N]
∂F(θ k)

∂θi
.

Prop. 2 implies that a machine having access to xi∗ , θ k
i∗ , γk,

and the common information h(X ;θ k) in the last iteration can
compute the new common information h(X ;θ k+1). Again, no
additional knowledge of X or θ k is required. As was the case
for G, computing H is again efficient as it only depends on
inputs of size m,d� N.

Algorithm 1 FW VIA MAP-REDUCE

1: Pick θ 0 ∈D
2: Compute h := h(X ;θ 0)
3: Let D := {(i,xi,θ

0
i)}i∈[N]

4: Distribute D over P processors
5: k := 0
6: repeat
7: Each processor computes the corresponding partial derivatives zi = G(h,xi,θ

k
i)

via map.
8: The processors find the minimum partial derivative zi∗ and some corresponding

information, i.e., i∗,xi∗ , and θi∗ via reduce.
9: Each processor computes the corresponding products (θ k

i − ei∗)
>zi, then the

duality gap (3) is computed by summing up the products via reduce.
10: Each processor updates their corresponding variables θi, based on (2b), via map.

11: h := H(h,xi∗ ,θi∗ ,γ
k).

12: k := k+1
13: until gap < ε

Parallelization Through Map-Reduce. We now outline
how to parallelize the Frank-Wolfe algorithm through map-
reduce operations. The algorithm is summarized in Alg. 1.
The main data structure D contains tuples of the form
(i,xi,θ

k
i), for i ∈ [N], partitioned and distributed over P pro-

cessors. A master processor executes the map-reduce code
in Alg. 1, keeping track of the common information h and
the duality gap at each step. A reduce returns the com-
puted value to the master, while a map constructs a new
data structure over the P processors. In the main loop, the
master processor broadcasts the common information to the
processors. Then, a simple map using function G appends
zi =

∂F(`k)
∂θi

to every tuple in D, yielding D′ (Line 7 in Alg. 1).
A reduce on D′ (Line 8) computes a tuple (i∗,xi∗ ,θi∗ ,zi∗),
for i∗ ∈ arg mini∈[N] zi. Similarly, a map and a reduce on D′

(a summation) yields the duality gap (Line 9). The master
processor broadcasts the step-size γk and i∗ to the processors:
then, a map adapts the present solution θ in data structure D
(Line 10). Finally, the common information h is adapted cen-
trally at the master node (Line 11).
Selecting the step size. Our exposition so far assumes that
the step size γk is computed at the master node before updat-
ing D and h. This is certainly the case if, e.g., γk = 2

k+2 , but
it does not readily follow when the line minimization rule (4)
is used. Nevertheless, all problems we consider (listed in Ta-
ble 1) satisfy an additional property that ensures that (4) can
also be computed efficiently in a centralized fashion:
Property 3 There exists an F̂ : Rm → R such that F(θ) =
F̂ (h(X ;θ)) .

Prop. 3 implies that line minimization (4) at iteration k is:

γk = arg minγ∈[0,1] F̂
(
h(X ;(1− γ)θ k + γei∗)

)
. (6)

The argument of F̂ is the updated common information hk+1

under step size γ . Hence, using Prop. 2, Eq. (6) becomes:

γk = arg minγ∈[0,1] F̂
(
H(h,xi∗ ,θ

k
i∗ ,γ)

)
, (7)

where h is the present common information. As F is convex
in θ k, it is also convex in γ , so this is also a convex optimiza-
tion problem. Crucially, (7) now depends on the full dataset
X and the full variable θ only through h. Therefore, the mas-
ter processor (having access to xi∗ , θ k

i∗ , γ , and h) can find the

Problems F(θ) m G compl. H compl.
Convex Approximation ‖Xθ − p‖2

2 d O(d) O(d)
Adaboost log

(
∑

d
j=1 exp(αc jr j)

)
d O(d) O(d)

D-optimal Design − logdetA(θ) d2 O(d2) O(d2)
A-optimal Design trace

(
A−1(θ)

)
2d2 O(d2) O(d2)

Table 1: Examples of problems satisfying Prop. 1–3.

step size via standard convex optimization techniques solving
(7). In fact, for several of the problems we consider here, line
minimization via (7) has a closed form solution. We stress
again that Prop. 3 is not strictly necessary to parallelize FW,
as a parallel implementation can always resort to a diminish-
ing step size.

Examples. We list here several machine learning and data
mining problems that satisfy Prop. 1, 2, and 3. They are sum-
marized in Table 1. The columns of the table indicate the
objective function, the size of the common information m as
a function of the dimension d, as well as the complexity of
the respective gradient function G and the common informa-
tion update function H. For further details refer to [Moharrer
and Ioannidis, 2017].

Convex Approximation: In Convex Approximation, a point
p∈Rd and N points xi ∈Rd , i∈ [N], are given, and the goal is
to project p on the convex hull of xi s. In other words, Convex
Approximation approximates p by a convex combination of
the points xi, i ∈ [N].

Experimental Design: In this problem, a learner wishes to
regress a linear model β ∈ Rd from input data (xi,yi) ∈ Rd×
R, i ∈ [N], where yi = β>xi + εi, for εi, i ∈ [N], i.i.d. noise
variables. The learner has access to features xi, i ∈ [N], and
wishes to determine which labels yi to collect (i.e., which ex-
periments to conduct) to accurately estimate β . The quantity
A(X ;θ) = ∑

N
i=1 θixix>i is referred as the design matrix, where

θi ∈R is the portion of experiments conducted by the learner
with feature xi. For brevity, we denote the design matrix by
A(θ). Experimental design minimizes a function of the de-
sign matrix, i.e., f(A(θ)) for some f : Rd×d → R. Choosing
different functions result in different experimental designs. In
D-optimal Design, f is the log-determinant and in A-optimal-
Design it is the trace. They both satisfy the stated properties.

Adaboost: In Adaboost, N classifiers and ground-truth labels
for d data points are given. The classification result is repre-
sented by a binary matrix X ∈ {−1,+1}N×d , where xi j is the
label generated by the i-th classifier for the j-th data point.
The true classification labels are given by a binary vector
r ∈ {−1,+1}d . The goal of Adaboost is to find a linear com-
bination of classifiers, defined as: c(X ,θ) = X>θ , such that
the mismatch between the new classifiers and ground-truth
labels is minimized.

Extensions. Our proposed distributed Frank-Wolfe algo-
rithm can be extended to a more general class of problems,
with constraints beyond the simplex. In particular, it can be
applied to problems with `1-norm constraint set and some
atomic-norm constraint sets. For a detailed discussion refer
to Section 6 in [Moharrer and Ioannidis, 2017].

Problem N d ε

Conv. Approx. 20M 100 0.02
Adaboost 20M 100 0.002

D-opt. Design 20M 100 0.09
A-opt. Design 20M 100 0.19

Table 2: Dataset B

Problem N d ε

Conv. Approx. 100000 1000 0.12
Adaboost 100000 1000 0.004

D-opt. Design 100000 1000 0.03
A-opt. Design 100000 1000 0.09

Table 3: Dataset C
Problem Dataset N d ε

D-opt. Design Movielens 137768 500 0.18
D-opt. Design HEPMASS 1M 38 0.04
D-opt. Design MSD 515345 90 0.01
D-opt. Design YAHOO 1,823,179 100 0.09
A-opt. Design YAHOO 1,823,179 100 0.17
Conv. Approx. YAHOO 1,823,178 100 0.03

Table 4: Real Datasets
Problem Dataset Speedup # of cores

Conv. Approx. Dataset C 42 128
Conv. Approx. Dataset B 98 350
Conv. Approx. YAHOO 78 210

Adaboost Dataset C 45 128
Adaboost Dataset B 133 350

D-opt. Design Dataset C 48 128
D-opt. Design Dataset B 126 350
D-opt. Design HEPMASS 35 64
D-opt. Design Movielens 33 64
D-opt. Design MSD 35 64
D-opt. Design YAHOO 93 210
A-opt. Design Dataset C 49 128
A-opt. Design Dataset B 102 350
A-opt. Design YAHOO 90 210

Table 5: Summary of speedups (over serial implementation) ob-
tained by parallel FW for each problem and dataset, along with the
level of parallelism. Beyond this number of cores, no significant
speedup improvement is observed.

4 Experiments
Implementation. We implemented Alg. 1 over Spark, an
open-source cluster-computing framework [Zaharia et al.,
2010]. Our FW implementation, which is publicly available,1
is generic and relies on an abstract class. A developer only
needs to implement three methods in this class: (a) the gradi-
ent function G, (b) the common information function h, and
(c) the common information adaptation function H. Once
these functions are implemented, our code takes care of exe-
cuting Alg. 1 in its entirety, and distributes its execution over
a Spark cluster.
Algorithms. We solve Convex Approximation, Adaboost, D-
Optimal Design, and A-Optimal Design summarized in Table
1. We implement both serial and parallel solvers. First, we
implement FW on a single processor (Serial FW) in Python,
setting γ using the line minimization rule (4). In addition, we
solve Convex Approximation, D-Optimal Design, A-Optimal
Design, and Adaboost using CVXOPT2 solvers, qp, cp, sdp,
and gp, respectively. We also implement our parallel algo-
rithm (Alg. 1) using our Spark implementation. We set the
step size using the line minimization rule (4). We refer to this
algorithm as Parallel FW.
Cluster. Our cluster comprises 8 worker machines, each with
56 Intel Xeon 2.6GHz CPU cores and 512GB of RAM, at
a total capacity of 448 cores and 4TB of RAM. We deploy
Spark over this cluster in standalone mode. In our exper-
iments the level of parallelism is measured in terms of the
number of worker cores P, ranging from 1 to 350.
Serial Execution. We compare the Serial FW algorithm with
the specialized interior point solvers (i.e., cp, qp, sdp, and

1https://github.com/neu-spiral/FrankWolfe
2cvxopt.org

0 5 10 15 20 25
Time(seconds)

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Fu
nc

tio
n

Va
lu

e

qp
serial FW

(a) CONVEXAPPROXIMATION

0 2 4 6 8 10 12 14 16
Time(seconds)

3.3

3.4

3.5

3.6

3.7

3.8

Fu
nc

tio
n

Va
lu

e

gp
serial FW

(b) ADABOOST

0 5 10 15 20 25 30 35 40
Time(seconds)

38
39
40
41
42
43
44
45

Fu
nc

tio
n

Va
lu

e

cp
serial FW

(c) D-OPTIMALDESIGN

0 20 40 60 80 100 120 140
Time(seconds)

150

200

250

300

350

Fu
nc

tio
n

Va
lu

e

sdp
serial FW

(d) A-OPTIMALDESIGN

Figure 1: Values of the objective function generated by the algo-
rithms as a function of time over a synthetic dataset with N = 5000
points. We see that Serial FW converges faster than interior point
methods.

gp) for each of the problems in Table 1. We project the solu-
tions at each iteration on the feasible set, and compute the
objective F on the projected solution. The time taken for
the projection is not considered in time measurements. Fig. 1
shows function values generated by the algorithms as a func-
tion of time. Serial FW outperforms the interior-point meth-
ods, even when not accounting for projections.
Effect of Parallelism. We use two large synthetic datasets to
construct X : Dataset B, a dataset with N = 20M and d = 100
(Table 2), and Dataset C with N = 100K and d = 1K (Ta-
ble 3). We also use the real datasets (Table 4). Fig. 2 and
Fig. 3 show the convergence time tε as a function of the level
of parallelism, measured in terms of the number of cores P.
We normalize tε by its value at the lowest level of parallelism.
The speedup of Parallel FW execution time over Serial FW is
shown in Table 5. Both figures and the table show that in-
creasing parallelism leads to significant speedups. For exam-
ple, using 350 compute cores, we can solve the 20M-variable
instance of D-optimal Design in 79 minutes, an operation that
would take 165 hours when executed serially.

5 Conclusions
We establish structural conditions under which FW admits a
highly scalable parallel implementation via map-reduce. FW
has applications in non-convex [Reddi et al., 2016] and com-
binatorial optimization [Calinescu et al., 2011; Bian et al.,
2017]; exploring the applicability of our approach in these
areas is an important open problem.

Acknowledgments
Research presented here was generously supported by NSF
grants CCF-1750539 and IIS-1741197.

https://github.com/neu-spiral/FrankWolfe
cvxopt.org

70 cores 140 cores 210 cores 350 cores0.0

0.2

0.4

0.6

0.8

1.0

1.2
Ti

m
e

D-optimal Design
A-optimal Design
Convex Approximation
Adaboost

(a) Dataset B

16 cores 32 cores 64 cores 128 cores0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ti
m

e

D-optimal Design
A-optimal Design
Convex Approximation
Adaboost

(b) Dataset C

Figure 2: Convergence time tε as a function of the level of paral-
lelism, measured in terms of cores P. We normalize tε by its value
at the lowest level of parallelism (13134s, 27420s, 6573s, and 4447s,
respectively, for each of the four problems in Fig. 2a and 487s, 486s,
62s, and 483s, respectively, in Fig. 2b).

8 cores 16 cores 32 cores 64 cores

0.5

1.0

Ti
m

e

Movielens
MSD
HEPMASS

(a) D-optimal Design for Movielens,
MSD, and HEPMASS

35 cores 70 cores 140 cores 210 cores

0.5

1.0

Ti
m

e

D-optimal Design
A-optimal Design
Convex Approximation

(b) D-optimal Design, A-optimal Design,
and Convex Approximation for the YA-
HOO dataset

Figure 3: Convergence time on real datasets. We normalize tε by its
value at the lowest level of parallelism (15247s, 3899s, and 4766s
for Movielens, MSD, and HEPMASS, respectively, in Fig. 3a, and
9888s, 7060s, and 1302s for D-optimal Design, A-optimal Design,
and Convex Approximation, respectively, in Fig 3b.

References
[Bellet et al., 2015] Aurélien Bellet, Yingyu Liang,

Alireza Bagheri Garakani, Maria-Florina Balcan,
and Fei Sha. A Distributed Frank-Wolfe Algorithm for
Communication-Efficient Sparse Learning. In SDM,
2015.

[Bialecki et al., 2005] Andrzej Bialecki, Michael Cafarella,
Doug Cutting, and Owen O?malley. Hadoop: a framework
for running applications on large clusters built of commod-
ity hardware, 2005.

[Bian et al., 2017] Yatao Bian, Baharan Mirzasoleiman,
Joachim M. Buhmann, and Andreas Krause. Guaranteed
non-convex optimization: Submodular maximization over
continuous domains. In AISTATS, 2017.

[Boyd and Vandenberghe, 2004] Stephen Boyd and Lieven
Vandenberghe. Convex Optimization. Cambridge Univer-
sity Press, New York, NY, USA, 2004.

[Calinescu et al., 2011] Gruia Calinescu, Chandra Chekuri,
Martin Pál, and Jan Vondrák. Maximizing a monotone
submodular function subject to a matroid constraint. SIAM
Journal on Computing, 40(6):1740–1766, 2011.

[Clarkson, 2010] Kenneth L. Clarkson. Coresets, sparse
greedy approximation, and the Frank-Wolfe algorithm.
ACM Trans. Algorithms, 6(4):63:1–63:30, September
2010.

[Dean and Ghemawat, 2008] Jeffrey Dean and Sanjay Ghe-
mawat. Mapreduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113,
2008.

[Dudik et al., 2012] Miro Dudik, Zaid Harchaoui, and
Jérôme Malick. Lifted coordinate descent for learning
with trace-norm regularization. In AISTATS, 2012.

[Frank and Wolfe, 1956] Marguerite Frank and Philip Wolfe.
An Algorithm for Quadratic Programming. Naval Re-
search Logistics Quarterly, 3(1-2):95–110, 1956.

[Hazan and Kale, 2012] Elad Hazan and Satyen Kale.
Projection-free online learning. In ICML, 2012.

[Jaggi, 2013] Martin Jaggi. Revisiting Frank-Wolfe:
Projection-free sparse convex optimization. In ICML,
2013.

[Joulin et al., 2014] Armand Joulin, Kevin Tang, and Li Fei-
Fei. Efficient image and video co-localization with Frank-
Wolfe algorithm. In ECVV, 2014.

[Leighton, 2014] F Thomson Leighton. Introduction to par-
allel algorithms and architectures: Trees Hypercubes. El-
sevier, 2014.

[Moharrer and Ioannidis, 2017] Armin Moharrer and Stratis
Ioannidis. Distributing frank-wolfe via map-reduce. In
ICDM, 2017.

[Reddi et al., 2016] Sashank J Reddi, Suvrit Sra, Barnabás
Póczós, and Alex Smola. Stochastic Frank-Wolfe methods
for non-convex optimization. In Allerton, 2016.

[Tran et al., 2015] N. L. Tran, T. Peel, and S. Skhiri. Dis-
tributed frank-wolfe under pipelined stale synchronous
parallelism. In 2015 IEEE International Conference on
Big Data (Big Data), 2015.

[Ying and Li, 2012] Yiming Ying and Peng Li. Distance
metric learning with eigenvalue optimization. Journal of
Machine Learning Research, 13(Jan):1–26, 2012.

[Zaharia et al., 2010] Matei Zaharia, Mosharaf Chowdhury,
Michael J Franklin, Scott Shenker, and Ion Stoica. Spark:
cluster computing with working sets. In HotCloud, 2010.

	Introduction
	Background
	Frank-Wolfe via Map-Reduce
	Experiments
	Conclusions

