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Abstract—Large-scale optimization problems abound in data
mining and machine learning applications, and the computational
challenges they pose are often addressed through parallelization.
We identify structural properties under which a convex opti-
mization problem can be massively parallelized via map-reduce
operations using the Frank-Wolfe (FW) algorithm. The class of
problems that can be tackled this way is quite broad and includes
experimental design, AdaBoost, and projection to a convex hull.
Implementing FW via map-reduce eases parallelization and
deployment via commercial distributed computing frameworks.
We demonstrate this by implementing FW over Spark, an engine
for parallel data processing, and establish that parallelization
through map-reduce yields significant performance improve-
ments: we solve problems with 10 million variables using 350
cores in 44 minutes; the same operation takes 133 hours when
executed serially.

Keywords—Frank-Wolfe; Distributed Algorithms; Convex Op-
timization; Spark;

I. INTRODUCTION

Map-reduce [1, 2] is a distributed framework used to
massively parallelize computationally intensive tasks. It en-
joys wide deployment in commercial cloud services such as
Amazon Web Services, Microsoft Azure, and Google Cloud,
and is extensively used to parallelize a broad array of data-
intensive algorithms [3, 4, 5, 6, 7]. Expressing algorithms in
map-reduce also allows fast deployment at a massive scale:
any algorithm expressed in map-reduce operations can be
quickly implemented and distributed on a commercial cluster
via existing programming frameworks [1, 2, 8].

In this paper, we focus on solving, via map-reduce, opti-
mization problems of the form:

minθ∈D0 F(θ), (1)

where F : RN → R is a convex, differentiable function, and

D0 ≡
{

θ ∈ RN
+ : ∑

N
i=1 θi = 1

}
(2)

is the N-dimensional simplex. Several important problems,
including experimental design, training SVMs, Adaboost, and
projection to a convex hull indeed take this form [9, 10, 11].
We are particularly interested in cases where (a) N� 1, i.e.,
the problem is high-dimensional, and, (b) F cannot be written
as the sum of differentiable convex functions. We note that,
as described in Sec. II, this is precisely the regime in which
(1) is hard to parallelize via, e.g., stochastic gradient descent.

It is well known that (1) admits an efficient implementation
through the Frank-Wolfe (FW) algorithm, also known as the

conditional gradient algorithm [12]. Indeed, as we discuss in
Sec. III-B, FW assumes a very simple, elegant form under
simplex constraints, and has important computational advan-
tages [9, 10, 13]. Our main contribution is to identify and
formalize a set of conditions under which solving Problem
(1) through FW admits a massively parallel implementation
via map-reduce. In particular:
• We identify two properties of the objective F under which

FW can be parallelized through map-reduce operations.
• We show that several important optimization problems,

including experimental design, Adaboost, and projection
to a convex hull satisfy the aforementioned properties.

• We implement our distributed FW algorithm on Spark
[8], an engine for large-scale distributed data processing.
Our implementation is generic: a developer using our
code needs to only implement a few problem-specific
computational primitives; our code handles execution
over a cluster.

• We extensively evaluate our Spark implementation over
large synthetic and real-life datasets, illustrating the
speedup and scalability properties of our algorithm. For
example, using 350 compute cores, we can solve prob-
lems of 10 million variables in 44 minutes, an operation
that would take 133 hours when executed serially.

• We introduce two stochastic variants of distributed FW,
in which we only compute a subsample of the elements
of the gradient. We implement these algorithms on Spark
and compare their performance with distributed FW.

The remainder of this paper is organized as follows. We briefly
review related work in Sec. II, and introduce FW and the map-
reduce framework in Sec. III. In Sec. IV, we state the prop-
erties under which FW admits a parallel implementation via
map-reduce, and describe the resulting algorithm. Examples
of problems that satisfy these properties are given in Sec. V.
We extend possible applications of our algorithm on constraint
sets beyond the simplex in Sec. VI. Finally, in Sec. VII and
VIII we describe our implementation and the results of our
experiments over a Spark cluster.

II. RELATED WORK

Frank-Wolfe (FW) [12] has attracted interest recently due to
its numerous computational advantages [9, 13, 14, 15, 16, 17].
It maintains feasibility throughout execution while being
projection-free, and minimizes a linear objective in each step;



the latter yields sparse solutions for several interesting con-
straint sets, which often accelerates computation [9, 10, 13].
Frank and Wolfe [12] showed a convergence rate of O( 1

ε
)

for smooth objectives, and Guélat and Marcotte [18] proved
that a variant using so-called ‘away-points’ converges linearly
when the objective is strongly convex, constraints form a
polytope, and the solution lies in its interior. Several recently
proposed FW variants attain linear convergence under weaker
conditions [19, 20, 21, 22]. The problems we consider do not
satisfy these conditions, and these FW variants are not readily
parallelizable; we thus focus on classic FW in this paper.

Stochastic Gradient Descent (SGD) [7, 23, 24, 25, 26]
parallelizes optimization problems in which the objective is
the sum of differentiable functions. Many important problems,
including regression and classification, fall into this cate-
gory, and SGD has been tremendously successful at tackling
them [23, 24, 25, 26]. SGD computes the contribution of
different terms to the gradient in parallel, and adapts the
present solution in a centralized fashion, often asynchronously.
Stochastic Dual Coordinate Ascent (SDCA) [27] also solves
problems with separable objectives by parallelizing their dual.
The Alternating Directions Method of Multipliers (ADMM)
[28] applies to both separable and non-separable objectives,
including LASSO (c.f. Sec. VI). In general, the above meth-
ods do not readily generalize to the remaining optimization
problems we study here. Moreover, their message complexity
increases with the number of variables; indeed, parallel SGD
and ADMM over millions of variables assume that each term
depends only on a few coordinates [23, 25, 28]. We do not
assume sum objectives or any sparsity conditions here.

More recently, and more relevant to our work, Bellet et
al. [10] propose a distributed version of FW for objectives of
the form F(θ) = g(Aθ), for some A ∈ Rd×N , where d � N.
Several examples fall in this class, including two we study here
(convex approximation and Adaboost); intuitively, Aθ serves
as the common information in our framework (c.f. Sec. IV).
The authors characterize the message and parallel comple-
xity when A is partitioned across multiple processors under
broadcast operations. We (a) consider a broader class of prob-
lems, that do not abide by the structure presumed by Bellet
et al. (e.g., the two experimental design problems presented
in Sec. V), and (b) establish properties under which FW can
be explicitly parallelized through map-reduce rather than the
message passing environment proposed by Bellet et al. This
allows us to leverage commercial map-reduce frameworks to
readily implement and deploy parallel FW on a cluster.

Stochastic variants of FW have been proposed recently
[15, 29, 30, 31], using unbiased estimates of the gradient at
each step. Hazan and Luo [30] improve upon earlier conver-
gence rates [15, 29] when the objective is smooth, strongly
convex, or Lipschitz. Reddi et al. [31] extend these results to
non-convex functions for which FW converges to a stationary
point. We implement two stochastic FW variants based on
gradient subsampling, and compare the relative performance
of subsampling to increasing parallelism in Sec. VIII.

III. TECHNICAL PRELIMINARY

A. Frank-Wolfe Algorithm

The FW algorithm [12], summarized in Alg. 1, solves
problems of the form:

Minimize F(θ) (3a)
subj. to: θ ∈D , (3b)

where F : RN → R is a convex function and D is a convex
compact subset of RN . The algorithm selects an initial feasible
point θ 0 ∈D and proceeds as follows:

sk = arg mins∈D s> ·∇F(θ k), (4a)

θ
k+1 = (1− γ

k)θ k + γ
ksk, (4b)

for k ∈ N, where γk ∈ [0,1] is the step size. At each iteration
k ∈ N, FW finds a feasible point sk minimizing the inner
product with the current gradient, and interpolates between
this point and the present solution. Note that θ k+1 ∈ D , as
a convex combination of θ k,sk ∈ D ; therefore, the algorithm
maintains feasibility throughout its execution. Steps (4a),(4b)
are repeated until a convergence criterion is met; we describe
how to set this criterion and the step size γk below.
Convergence criterion. Convergence is typically determined
in terms of the duality gap [13]. The duality gap at feasible
point θ k ∈D in iteration k ∈ N is:

g(θ k)≡max
s∈D

(θ k− s)>∇F(θ k)
(4a)
= (θ k− sk)T

∇F(θ k), (5)

The convexity of F implies that F(θ k)−F(θ ∗) ≤ g(θ k) for
any optimal solution θ ∗ ∈ arg minθ∈D F(θ) [13]. In other
words, g(θ) is an upper bound on the objective value error at
step k. The algorithm, therefore, terminates once the duality
gap is smaller than some ε > 0.
Step Size. The step size can be diminishing, e.g., γk = 2

k+2 ,
or set through line minimization, i.e.:

γ
k = arg minγ∈[0,1] F

(
(1− γ)θ k + γsk

)
. (6)

Convergence to an optimal solution is guaranteed in both cases
for problems in which the objective has a bounded curvature
[12, 13]. In this case, both of the above step sizes imply
that the k-th iteration of the Frank-Wolfe algorithm satisfies
F(θ k)−F(θ ∗) ≤ O( 1

k ) [13]. For arbitrary convex objectives
with unbounded curvature, FW still converges if the step size
is set by the line minimization rule [32].

B. Frank-Wolfe Over the Simplex

We focus on FW for the special case where the feasible
set D is the simplex D0, given by (2). As described in
Section V, this set of constraints arises in many problems,
including training SVMs, convex approximation, Adaboost,
and experimental design (see also [9]). Under this set of
constraints, the linear optimization problem in (4a) has a
simple solution: it reduces to finding the minimum element



Algorithm 1 FRANK-WOLFE

1: Pick θ 0 ∈D
2: k := 0
3: repeat
4: sk := arg mins∈D s> ·∇F(θ k)
5: gap := (θ k− sk)>∇F(θ k)
6: θ k+1 := (1− γk)θ k + γksk

7: k := k+1
8: until gap < ε

of the gradient ∇F(θ k). Formally, for [N]≡ {1,2, . . . ,N}, and
{ei}i∈[N] the standard basis of RN , (4a) reduces to:

sk = ei∗ , where i∗ ∈ arg mini∈[N]
∂F(θ k)

∂θi
. (7)

Note that sk is a vector in the standard basis of RN , for all
k ∈ N: as such, it is extremely sparse, having only one non-
zero element. The sparsity of sk plays a role in producing our
efficient, distributed implementation, as discussed below.

C. Map-Reduce Framework

Consider a data structure D ∈X N comprising N elements
di ∈X , i∈ [N], for some domain X . A map operation over D
applies a function to every element of the data structure. That
is, given f : X →X ′, the operation D′ = D.map( f ) creates a
data structure D′ in which every element di, i∈ [N], is replaced
with f (di). A reduce operation performs an aggregation
over the data structure, e.g., computing the sum of the data
structure’s elements. Formally, let ⊕ be a binary operator
⊕ : X ×X →X that is commutative and associative, i.e.,

x⊕ y = y⊕ x, and ((x⊕ y)⊕ z) = (x⊕ (y⊕ z)).

Then, D.reduce(⊕) iteratively applies the binary operator
⊕ on D, returning

⊕
i∈[N] di = d1 ⊕ . . .⊕ dN . Examples of

commutative, associative operators ⊕ include addition (+), the
min and max operators, binary AND, OR, and XOR, etc.

Both map and reduce operations are “embarrassingly par-
allel”. Presuming that the data structure D is distributed over P
processors, a map can be executed without any communication
among processors, other than the one required to broadcast
the code that executes f . Such broadcasts require only logP
rounds and the transmission of P− 1 messages, when the P
processors are connected in a hypercube network; the same
is true for reduce operations [33]. There exist several com-
putational frameworks, including Hadoop [2] and Spark [8],
that readily implement and parallelize map-reduce operations.
Hence, expressing an algorithm like FW in terms of map and
reduce operations allows us to (a) parallelize the algorithm
in a straightforward manner, and (b) leverage these existing
frameworks to quickly implement and deploy FW at scale.

IV. FRANK-WOLFE VIA MAP-REDUCE

A. Gradient Computation through Common Information

In this section, we identify two properties of function F
under which FW over the simplex D0 admits a distributed
implementation through map-reduce. Intuitively, our approach
exploits an additional structure exhibited by several important
practical problems: the objective function F often depends

on the variables θ as well as a dataset, given as input to
the problem. We represent this dataset through a matrix X =
[xi]i∈[N] ∈ RN×d whose rows are vectors xi ∈ Rd , i ∈ [N]. The
dataset can be large, as N� 1; as such, X may be horizontally
(i.e., row-wise) partitioned over multiple processors. Note here
that the dataset size (N) equals the number of variables in F .

We assume that the dependence of F to the dataset X is
governed by two properties. The first property asserts that the
partial derivative ∂F

∂θi
for any i∈ [N] depends on (a) the variable

θi, (b) a datapoint xi in the dataset, as well as (c) some common
information h. This common information, not depending on i,
fully abstracts any additional effect that θ and X may have
on partial derivative ∂F

∂θi
. Our second property asserts that this

common information is easy to update: as variables θ k are
adapted according to the FW algorithm (4), the corresponding
common information h can be re-computed efficiently, through
a computation that does not depend on N. More formally, we
assume that the following two properties hold:

Property 1: There exists a matrix X = [xi]i∈[N] ∈ RN×d ,
whose rows are vectors xi ∈Rd , i∈ [N], such that for all i∈ [N]:

∂F(θ)
∂θi

= G(h(X ;θ),xi,θi), (8)

for some h : RN×d ×RN → Rm, and G : Rm×Rd ×R→ R,
where m,d� N.
We refer to h as the common information and to G as the
gradient function. When X ∈Rd×N is partitioned over multiple
processors, Prop. 1 implies that a processor having access to
θi, xi, and the common information h(X ;θ) can compute the
partial derivative ∂F

∂θi
. No further information on other variables

or datapoints is required other than h. Moreover, computing
G is efficient, as its inputs are variables of size m,d� N.

Recall from (4) and (7) that, when the constraint set is the
simplex, adaptations to θ k take the form:

θ k+1 = (1− γk)θ k + γei∗ , where i∗ ∈ arg mini∈[N]
∂F(θ k)

∂θi
.

Our second property asserts that when θ k is adapted thusly,
the common information h can be easily updated, rather than
re-computed from scratch from X and θ k+1:

Property 2: Let D = D0. Given h(X ;θ k), the common
information at iteration k of the FW algorithm, the common
information h(X ;θ k+1) at iteration k+1 is:

h(X ;θ
k+1) = H(h(X ;θ

k),xi∗ ,θ
k
i∗ ,γ

k), (9)

for some H : Rm × Rd × R × R → Rm, where i∗ ∈
arg mini∈[N]

∂F(θ k)
∂θi

.
Prop. 2, therefore, implies that a machine having access to
xi∗ , θ k

i∗ , γk, and the common information h(X ;θ k) in the
last iteration can compute the new common information
h(X ;θ k+1). Again, no additional knowledge of X or θ k is
required. Moreover, similar to the computation of G in Prop. 1,
this computation is efficient, as it again only depends on
variables of size m,d � N. As we will see, in establishing
that Prop. 2 holds for different problems, we leverage the
sparsity of sk at iteration k ∈ N, as induced by (7): the fact
that θ k is interpolated with vector ei∗ , containing only a single



Algorithm 2 SERIAL FW UNDER PROPERTIES 1 AND 2
1: Pick θ 0 ∈D
2: h := h(X ;θ 0)
3: k := 0
4: repeat
5: for each i ∈ [N] do
6: zi := G(h,xi,θi)
7: end for
8: Find i∗ := arg mini∈[N] zi

9: gap := (θ k− ei∗ )
>z

10: θ k+1 := (1− γk)θ k + γkei∗
11: h := H(h,xi∗ ,θ

k
i∗ ,γ

k).
12: k := k+1
13: until gap < ε

non-zero coordinate, is precisely the reason why the common
information can be updated efficiently.
Example: For the sake of concreteness, we give an example of
an optimization problem over the simplex that satisfies Prop-
erties 1 and 2, namely, CONVEXAPPROXIMATION; additional
examples are presented in Section V. Given a point p ∈ Rd

and N vectors xi ∈Rd , i ∈ [N], the goal of CONVEXAPPROXI-
MATION is to find the projection of p on the convex hull of
set {xi | i ∈ [N]}. This can be formulated as:

CONVEXAPPROXIMATION

Minimize F(θ) = ‖XT
θ − p‖2

2 (10a)
subj. to: θ ∈D0, (10b)

where X = [xi]i∈[N] ∈ RN×d . CONVEXAPPROXIMATION satis-
fies Prop. 1 as ∂F(θ)

∂θi
= 2xT

i (X
T θ− p) =G(h(X ;θ),xi), i∈ [N],

where common information h : RN×d×RN → Rd is

h(X ;θ) = XT
θ − p, (11)

and gradient function G : Rd ×Rd → R is G(h,x) = 2xT h.
Prop. 1 thus holds when d� N. Prop. 2 also holds because,
under (4) and (7), the common information at step k+1 is:

h(X ;θ
k+1) = (1− γ

k)h(X ;θ
k)+ γ

k(xi∗ − p)

= H(h(X ;θ
k),xi∗ ,γ

k),

where H :Rd×Rd×R→Rd is given by H(h,x,γ)=(1−γ)h+
γ(x− p). Note that, in this problem, m = d � N. Moreover,
given their arguments, functions G and H can be computed in
O(d) time (i.e., their complexity does not depend on N� 1).

B. A Serial Algorithm

Before describing our parallel version of FW, we first
discuss how it can be implemented serially when Properties 1
and 2 hold. The main steps are outlined in Alg. 2. Beyond
picking an initial feasible point, the algorithm computes the
initial value of the common information h. At each iteration
of the for loop, the algorithm computes the gradient ∇F using
the present common information, and updates both θ k and
the common information h to be used in the next step. It
is easy to see that all steps in the main loop of Alg. 2 that
involve computations depending on N (namely, Lines 5–10)
can be parallelized through map-reduce operations, when X
and θ are distributed over multiple processors. We describe
this in detail in the next section; crucially, the adaptation of

the common information h (Line 11) does not depend on N,
and can, therefore, be performed efficiently in one processor.

We note here that exploiting Properties 1 and 2 has ef-
ficiency advantages even in serial execution. In general, the
complexity of computing the gradient ∇F as a function of θ ∈
RN may be quadratic in N, or higher, as each partial derivative
∂F
∂θi

, i ∈ [N], is a function of N variables. Instead, Properties 1
and 2 imply that the complexity of computing the gradient ∇F
at each iteration of (4) is O(N): this is the complexity when
the common information is adapted through H and used to
compute new partial derivatives through the gradient function
G. For example, in the case of CONVEXAPPROXIMATION,
the complexity is O(Nd). As we show in Section VIII, this
leads to a significant speedup, allowing Alg. 2 to outperform
interior-point methods even when executed serially.

C. Parallelization Through Map-Reduce

We now outline how to parallelize Alg. 2 through map-
reduce operations. The algorithm is summarized in Alg. 3,
where we use the notation x 7→ f (x) and x,y 7→ g(x,y),
to indicate a unitary function f and a binary function g,
respectively. The main data structure D contains tuples of the
form (i,xi,θ

k
i ), for i ∈ [N], partitioned and distributed over P

processors. A master processor executes the map-reduce code
in Alg. 3, keeping track of the common information h and
the duality gap at each step. A reduce returns the computed
value to the master, while a map constructs a new data structure
distributed over the P processors.

Each step in the main loop of Alg. 2 has a corresponding
map-reduce implementation in Alg. 3. In the main loop, a
simple map using function G appends zi =

∂F(`k)
∂θi

to every tuple
in D, yielding D′ (Line 7 in Alg. 3). A reduce on D′ (Line 8)
computes a tuple (i∗,xi∗ ,θi∗ ,zi∗), for i∗ ∈ arg mini∈[N] zi. Sim-
ilarly, a map and a reduce on D′ (a summation) yields the
duality gap (Line 9), while a map adapts the present solution θ

in data structure D (Line 10). Finally, the common information
h is adapted centrally at the master node (Line 11), as in Alg. 2.
Message and Parallel Complexity. The reduce in Line 8
requires logP parallel rounds, involving P− 1 messages of
size O(d) [33]. Computing the gradient in parallel through a
map in Line 7 requires knowledge of the common information
at each processor. Hence, in the beginning of each iteration, h
is broadcast to the P processors over which D is distributed:
this again requires in logP rounds and P−1 messages. Note
that the corresponding message has size O(m), that does not
depend on N. Similarly, the reductions in Lines 9 and 10
require broadcasting i∗, which has size O(1). In practice, such
variables are typically shipped to the processors by the master
along with the code of the function or operator to be executed
by the corresponding map or reduce. The operations in Lines
7–10 thus require logP parallel rounds and the transmission
of O(P) messages of size O(m+d).

D. Selecting the step size.

Our exposition so far assumes that the step size γk is
computed at the master node before updating D and h. This is



Algorithm 3 FW VIA MAP-REDUCE

1: Pick θ 0 ∈D
2: Compute h := h(X ;θ 0)
3: Let D := {(i,xi,θ

0
i )}i∈[N]

4: Distribute D over P processors
5: k := 0
6: repeat
7: D′ = D.map

(
(i,xi,θi) 7→ (i,xi,θi,G(h,xi,θi)

)
8: (i∗,xi∗ ,θi∗ ,zi∗ ) :=D′.reduce

(
(i,xi,θi,zi),(i′,xi′ ,θi′ ,zi′ ) 7→

{
(i,xi,θi,zi) if zi <zi′

(i′,xi′ ,θi′ ,zi′ ) if zi≥zi′

)

9: gap := D′.map

(
(i,xi,θi,zi) 7→

{
θi · zi if i 6= i∗

(θi−1) · zi if i = i∗

)
.reduce(+)

10: D := D.map

(
(i,xi,θi) 7→

{
(i,xi,(1− γk)θi) if i 6= i∗

(i,xi,(1− γk)θi + γk) if i = i∗

)
11: h := H(h,xi∗ ,θi∗ ,γ

k).
12: k := k+1
13: until gap < ε

Problems F(θ) m G compl. H compl.
Convex Approximation ‖Xθ − p‖2

2 d O(d) O(d)
Adaboost log

(
∑

d
j=1 exp(Cc jr j)

)
d O(d) O(d)

D-optimal Design − logdetA(θ) d2 O(d2) O(d2)
A-optimal Design trace

(
A−1(θ)

)
2d2 O(d2) O(d2)

TABLE I: Examples of problems satisfying Prop. 1–3.

certainly the case if, e.g., γk = 2
k+2 , but it does not readily fol-

low when the line minimization rule (6) is used. Nevertheless,
all problems we consider here, including CONVEXAPPROXI-
MATION, satisfy an additional property that ensures that (6)
can also be computed efficiently in a centralized fashion:

Property 3: There exists an F̂ : Rm→ R such that F(θ) =
F̂ (h(X ;θ)) .
Prop. 3 implies that line minimization (6) at iteration k is:

γk = arg minγ∈[0,1] F̂
(
h(X ;(1− γ)θ k + γei∗)

)
. (12)

The argument of F̂ is the updated common information hk+1

under step size γ . Hence, using Prop. 2, Eq. (12) becomes:

γk = arg minγ∈[0,1] F̂
(
H(h,xi∗ ,θ

k
i∗ ,γ)

)
, (13)

where h is the present common information. As F is convex in
θ k, it is also convex in γ , so (13) is also a convex optimization
problem. Crucially, (13) depends on the full dataset X and
the full variable θ only through h. Therefore, the master
processor (having access to xi∗ , θ k

i∗ , γ , and h) can find the
step size via standard convex optimization techniques solving
(13). In fact, for several of the problems we consider here,
line minimization has a closed form solution; for example, for
CONVEXAPPROXIMATION, the optimal step size is given by:

γk =
h>h−(xi∗−p)>h

(xi∗−p)>(xi∗−p)+h>h−2(xi∗−p)>h
.

Though all problems we study, listed in Table I, satisfy Prop. 1,
2, as well as 3, we stress again that Prop. 3 is not strictly
necessary to parallelize FW, as a parallel implementation can
always resort to a diminishing step size.

V. EXAMPLES

We provide several examples of problems that satisfy
Prop. 1, 2, and 3; a summary is given in Table I.

Experimental Design: In experimental design, a learner
wishes to regress a linear model β ∈ Rd from input data
(xi,yi) ∈ Rd×R, i ∈ [N], where yi = β>xi + εi, for εi, i ∈ [N],
i.i.d. noise variables. The learner has access to features xi, i ∈
[N], and wishes to determine which labels yi to collect (i.e.,
which experiments to conduct) to accurately estimate β . This
problem can be posed as [11]:

minθ∈D0 f
((

∑
N
i=1 θixix>i

)−1
)
, (14)

where θi indicates the portion of experiments conducted by the
learner with feature xi. The quantity A(X ;θ) = ∑

N
i=1 θixix>i is

the design matrix of the experiment. For brevity, we represent
A(X ;θ) as A(θ) below. Different choices of f :Rd×d→R lead
to different optimality criteria; we review two below.
D-Optimal Design: In D-Optimal design f is the log-
determinant, and (14) becomes:

D-OPTIMALDESIGN

Minimize F(θ) = logdet
(
∑

N
i=1 θixix>i

)−1 (15a)
subj. to: θ ∈D0, (15b)

D-OPTIMALDESIGN satisfies Prop. 1 as:
∂F
∂θi

=−x>i A−1(θ)xi = G(h(X ,θ),xi), for all i ∈ [N],

where the common information h : RN×d ×RN → Rd×d is
h(X ;θ) = A−1(θ), and the gradient function G : Rd×d×Rd→
R, is given by G(h,x) = −x>hx. Hence, Prop. 1 holds when
d2 � N. Using the Sherman-Morrison formula [34] we can
show that the common information at step k+1 is:

A−1(θ k+1) = A−1(θ k)
1−γ

−
γ

(1−γ)2
A−1(θ k)xi∗ x>i∗A−1(θ k)

1+ γ

1−γ
x>i∗A−1(θ k)xi∗

. (16)

As a result, h(X ;θ k+1)=H(h(X ,θ k),xi∗ ,γ), where H :Rd×d×
Rd×R→ Rd×d is:

H(h,x,γ)= h
1−γ
−

γ

(1−γ)2
hxx>h

1+ γ

1−γ
x>hx

. (17)

Therefore, Prop. 2 also holds. Note that, in this problem, m =
d2�N. Functions G and H include only matrix-to-vector and
vector-to-vector multiplications; hence, given their arguments,
they can be computed in O(d2) time.
A-Optimal Design: In A-Optimal design f is the trace:

A-OPTIMALDESIGN

Minimize F(θ) = Tr
(
A−1(θ)

)
(18a)

subj. to: θ ∈D0. (18b)

The partial derivative of the F can be written as:
∂F
∂θi

=−x>i A−2(θ)xi = G(h(X ;θ),xi), for all i ∈ [N].

where the common information h :RN×d×RN→Rd×d×Rd×d

is h(X ;θ) = (h1,h2), where h1 = A−1(θ) and h2 = A−2(θ).
The gradient function G : Rd×d ×Rd → R is G((h1,h2),x) =
−x>h2x. Hence, Property 1 holds when d2�N. The common
information at step k + 1 is

(
A−1(θ k+1),A−2(θ k+1)

)
. The

first term can be computed as in (16). The second term is



the square of the first term; expanding it gives a formula in
terms of A−1(θ k) and A−2(θ k). More formally, the common
information at iteration k+1 can be written as:

h(X ;θ
k+1) = (hk+1

1 ,hk+1
2 ) = H(h(X ;θ

k),xi∗ ,γ),

where H((h1,h2),x,γ),= (H1(h1,x,γ),H2(h1,h2,x,γ)), and
function H1 is given by (17), while H2 : Rd×d×Rd×d×Rd×
R→ Rd×d is:

H2(h1,h2,x,γ)=
h2

(1−γ)2
−

γ

(1−γ)3
h2xx>h1

1+ γ

1−γ
x>h1xi

−
γ

(1−γ)3
h1xx>h2

1+ γ

1−γ
x>h1

+

γ2

(1−γ)4
x>h2xh1xx>h2

(1+ γ

1−γ
x>h1x)2

.

This illustrates why common information includes both
A−1(θ k) and A−2(θ k): adapting the latter requires knowledge
of both quantities. Note also that m = 2d2� N. Functions G
and H again only require matrix-to-vector and vector-to-vector
multiplications and, hence, can be computed in O(d2) time.
AdaBoost: Assume that N classifiers and ground-truth labels
for d data points are given. The classification result is rep-
resented by a binary matrix X ∈ {−1,+1}N×d , where xi j is
the label generated by the i-th classifier for the j-th data
point. The true classification labels are given by a binary
vector r ∈ {−1,+1}d . The goal of Adaboost is to find a linear
combination of classifiers, defined as: c(X ,θ) = X>θ , such
that the mismatch between the new classifiers and ground-
truth labels is minimized. The problem can be formulated as:

ADABOOST

Minimize F(θ) = log
(

∑
d
j=1 exp(−αc j(X ,θ)r j)

)
(19a)

subj. to: θ ∈D0, (19b)

where r j and c j are, respectively, the j th element of the r
and c vectors, and α ∈ R is a tunable parameter. Again, (19)
satisfies Prop. 1 as:

∂F(θ)
∂θi

=−x>i b = G(h(X ;θ),xi), for all i ∈ [N],

where b ∈ Rd is a vector, whose elements are b j =
αr j exp(−αc jr j)

∑
d
i=1 exp(−αc jr j)

, j ∈ [d]. The common information, h : RN×d×
RN → Rd is h(X ;θ) = [exp−αc jr j] j∈[d] , and the gradient
function G : Rd × Rd → R is G(h,x) = x>ĥ, where ĥ =[

αr jh j

∑
d
i=1 hi

]
j∈[d]

. Hence, Prop. 1 holds when d � N. Prop. 2

also holds because, under (4) and (7), the common in-
formation at step k + 1 is h(X ;θ k+1) = H(h(X ,θ k),xi∗ ,γ),
where H : Rd × Rd × R → Rd is given by H(h,xi,γ) =[
h(1−γ)

j exp(−γαx jir j)
]

j∈[d]
. In this problem, m = d� N and

functions G and H can be computed in O(d) time.
Serial Solvers: All four problems in Table I are convex, and
some admit specialized solvers. A-OPTIMALDESIGN can be
reduced to a semidefinite program, (see Sec. 7.5 of [11]),
and solved as an SDP. ADABOOST can be expressed as a
geometric program (GP) [9], and CONVEXAPPROXIMATION
is a quadratic program (QP). D-OPTIMALDESIGN is a general
convex optimization problem, and can be solved by standard
techniques such as, e.g., barrier methods. In Sec. VIII we
compare FW to the above specialized solvers, and we see that
it outperforms them in all cases.

VI. EXTENSIONS

Our proposed distributed Frank-Wolfe algorithm can be
extended to a more general class of problems, with constraints
beyond the simplex.
`1−constraint: The `1 (or lasso) constraint ‖θ‖1 ≤K appears
in many optimization problems as means of enforcing sparsity
[35, 36]. For this constraint, adaptation (4b) becomes:

sk = σi∗ei∗ , where i∗ = arg maxi∈[N]

∣∣∣ ∂ f
∂θi

∣∣∣ , (20)

and σi∗ =−Ksign( ∂ f
∂θi∗

). Eq. (20) can be computed in parallel
through a reduce. The adaptation step of γk is slightly
different from the simplex case, as we interpolate between
θ k a scaled basis vector σi∗ei∗ .

As an example, consider the LASSO problem [36]:

minθ :‖θ‖1≤K ‖X>θ − p‖2
2. (21)

Here, θ ∈ RN is the vector of weights, X ∈ RN×d is the
matrix of N−dimensional features for d datapoints, and p∈Rd

is the observed outputs. Note that LASSO has exactly the
same objective as CONVEXAPPROXIMATION, so the common
information from (11) is h(X ;θ) = XT θ − p. The common
information can be updated as h(X ;θ k+1) = (1−γk)h(X ;θ k)+
γk(σi∗xi∗ − p)., i.e., it is a function of h(X ;θ k) and the usual
“local” information at i∗, now including also σi∗ .
Atomic Norms: More generally, consider the problem

minθ :‖θ‖A ≤K f (θ),

where ‖x‖A denotes the atomic norm: given a set of atoms
A = {ai ∈ RN} the atomic norm is defined as ‖x‖A = inf{t |
t ≥ 0, t ∈ CA }, where CA is the convex hull of the atoms.
Atomic norms are used to encourage solutions that have a
low-dimensional structure, modelled as a linear combination of
only few atoms [37, 38, 39, 40]. Tewari et el. [40] propose an
FW-like algorithm for this class of problems. In this algorithm,
the step 4 of Alg. 1 is replaced by

sk = arg mina∈A a> ·∇F(θ k). (22)

Then, the new solution is convex combination of the current
solution and Ksk, similar to FW Algorithm.

Our approach can be extended to problems of this form,
where the set A comprises atoms {±αiei}, where αi > 0 s
are arbitrary scalars. Eq. (22) becomes sk =−αi∗sign( ∂ f

∂θi∗
)ei∗ ,

where i∗ = arg maxi∈[N] |αi
∂ f
∂θi
|. This can be implemented

through a reduce, and adaptation is slightly different from
the simplex case as again sk is a scaled basis vector. An
appropriate variant of Prop. 2, should hold w.r.t. this adaptation
step.

VII. IMPLEMENTATION

We implemented Alg. 3 over Spark, an open-source cluster-
computing framework [8]. Spark inherently supports map-
reduce operations, and is well-suited for parallelizing iterative
algorithms; this is because results of map-reduce operations



can be cached in RAM, over multiple machines, and accessed
in the next iteration of the algorithm [8].

Our FW implementation is generic, relying on an abstract
class. A developer only needs to implement three methods in
this class: (a) the gradient function G, (b) the common infor-
mation function h, and (c) the common information adaptation
function H. Once these functions are implemented, our code
takes care of executing Alg. 3 in its entirety, and distributes
its execution over a Spark cluster. Our implementation, which
is publicly available,1 can thus be used to solve arbitrary
problems that satisfy Prop. 1 and 2, and quickly deploy and
parallelize their execution over a Spark cluster. We have also
instantiated this class for the problems summarized in Table I
and used it in our experiments.

VIII. EXPERIMENTS

A. Experiment Setup

Cluster. Our cluster comprises 8 worker machines, each with
56 Intel Xeon 2.6GHz CPU cores and 512GB of RAM, at
a total capacity of 448 cores and 4TB of RAM. We deploy
Spark over this cluster in standalone mode.
Algorithms. We solve Convex Approximation, Adaboost, D-
Optimal Design, and A-Optimal Design summarized in Table
I, as well as LASSO (c.f. Sec. VI). We implement both serial
and parallel solvers. First, we implement Serial FW (Alg. 2)
in Python, setting γ using the line minimization rule (6). In
addition, we solve Convex Approximation, D-Optimal Design,
A-Optimal Design, and Adaboost using CVXOPT solvers, qp,
cp, sdp, and gp, respectively. CVXOPT is a software package
for convex optimization based on the Python programming
language.2 We implement the distributed ADMM for LASSO
problem, as described in Section 8.3 of [28]. We also imple-
ment our parallel algorithm (Alg. 3) using our Spark generic
implementation. We again set the step size using the line
minimization rule (6). We refer to this algorithm as Parallel
FW. We also introduce two stochastic parallel variants that
subsample the gradient; we discuss these in Section VIII-D.
Synthetic Data. For D-optimal Design, A-optimal Design,
Convex Approximation, and LASSO, the synthetic data has
the form of a matrix X ∈ RN×d . The point p in Convex
Approximation is a vector p ∈ Rd . The elements of X and
p are sampled independently from a uniform distribution in
[0,1]. For Adaboost, input data is given by a binary matrix
X ∈ {−1,+1}N×d and ground-truth labels are represented by
a binary vector r ∈ {−1,+1}d . The elements of r are sampled
independently from a Bernoulli distribution with parameter
0.5. Then each row of X is generated from r as follows: each
element xi j is equal to r j with probability 0.7, and it is equal
to −r j with probability 0.3. For LASSO, the observed outputs
are denoted by a vector p∈Rd , which is generated as follows:
a sparse vector θ ∗ ∈RN is sampled from a uniform distribution
in [0,1], s.t., only 1 percent of its elements are non-zero. Then
the vector p is synthesized as p = X>θ ∗+ε, where ε ∈Rd is

1https://github.com/neu-spiral/FrankWolfe
2cvxopt.org

the noise vector, and its elements are sampled from a uniform
distribution in [0,0.01]. We create three synthetic datasets with
different values of N and d, summarized in Tables II–IV.
Real Data. We also experiment with 3 real datasets, sum-
marized in Table V. The first dataset is Movielens [41]. This
includes 20,000,263 ratings for 27,278 movies generated by
138,493 users. We have kept the top 500 most-rated movies,
resulting in 413,304 ratings, rated by 137,768 users. We have
represented the data as a matrix X ∈ RN×d with N = 137768
and d = 500, so that xi j indicates the rating of user i for movie
j. Missing entries are set to zero. The second dataset is a high-
energy physics dataset, HEPMASS [42]. The dataset has 106

data points and 28 features. We represent it as a matrix with
N = 106 and d = 28. The third dataset is the MSD dataset [42],
which comprises 515345 songs with 90 features. We represent
it as a matrix with N = 515345 and d = 90.
Metrics. We use two metrics. The first is the objective
F of each problem, whose evolution we track as different
algorithms progress. Our second metric is tε , the minimum
time for the algorithm to obtain a solution θ within an ε-
neighborhood of the optimal solution F(θ ∗). As we do not
know F(θ ∗), we use F(θ)− g(θ) ≤ F(θ ∗) instead. More
formally:

tε = min
{

t : F(θ(t))
F(θ(t))−g(θ(t)) ≤ 1+ ε

}
, (23)

where θ(t) denotes the obtained solution at time t. As F(θ)−
g(θ)≤ F(θ ∗), tε overestimates the time to convergence.

B. Serial Execution

Our first experiment compares the Serial FW algorithm with
the specialized interior point solvers mentioned in Section V
(i.e., cp, qp, sdp, and gp) for each of the problems in Table
I. We use the small synthetic dataset (Dataset A) in Table II.

In each execution, we keep track of the objective function
F as a function of time elapsed. Unlike FW, the interior-point
methods do not generate feasible solutions at each iteration.
Therefore, we project the solutions at each iteration on the
feasible set, and compute the objective F on the projected
solution. The time taken for the projection is not considered
in time measurements; as such, our plots underestimate the
time taken by the interior-point algorithms.

Fig. 1 shows function values generated by the algorithms
as a function of time. Serial FW outperforms the interior-
point methods, even when not accounting for projections.
The reason is that, in contrast to interior-point methods, the
time complexity of computations at each iteration of Serial
FW is linearly dependent on N. As a result, when d � N,
Serial FW is considerably faster, even though it requires more
iterations to converge. Note that the objective values generated
by interior-point methods are non-monotone, as these methods
alternate between improving feasibility and optimality.

C. Effect of Parallelism

To study parallelism, we first show results for two large-
scale synthetic datasets: Dataset B, a dataset with N = 107 and
d = 100 (Table III), and Dataset C with N ranging between

https://github.com/neu-spiral/FrankWolfe
cvxopt.org
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Fig. 1: Values of the objective function generated by the algorithms as
a function of time over Dataset A. We see that Serial FW converges
faster than interior point methods.

Problems N d algs
Conv. Approx. 5000 20 qp

Adaboost 5000 100 gp
D-opt. Design 5000 20 cp
A-opt. Design 5000 20 sdp

TABLE II: Dataset A

Problem N d ε

Conv. Approx. 10M 100 0.12
Adaboost 10M 100 0.07

D-opt. Design 10M 100 0.12
A-opt. Design 10M 100 0.25

TABLE III: Dataset B

Problems N d ε

Conv. Approx. 220000 500 0.01
Adaboost 190000 500 0.001

D-opt. Design 110000 500 0.05
A-opt. Design 110000 500 0.14

TABLE IV: Dataset C

Dataset N d ε

Movielens 137768 500 0.18
HEPMASS 1M 38 0.04

MSD 515345 90 0.01

TABLE V: Real Datasets
Problem Dataset Speedup # of cores

Conv. Approx. Dataset C 35 64
Conv. Approx. Dataset B 97 210

Adaboost Dataset C 31 64
Adaboost Dataset B 138 210

D-opt. Design Dataset C 30 64
D-opt. Design Dataset B 110 210
D-opt. Design HEPMASS 35 64
D-opt. Design Movielens 33 64
D-opt. Design MSD 35 64
A-opt. Design Dataset C 30 64
A-opt. Design Dataset B 117 210

TABLE VI: A summary of speedups (over serial implementation)
obtained by parallel FW for each problem and dataset, along with
level of parallelism. Beyond this number of cores, no significant
speedup improvement is observed.

100K and 220K and d = 500 (Table IV). Fig. 2 shows tε as a
function of the level of parallelism, measured in terms of the
number of cores P, for each of the two datasets. We normalize
tε by its value at P = 70 and P = 4, respectively. Figure 3
shows objective F , as a function of time for different levels
of parallelism.

The speedup of Parallel FW execution time over Serial
FW is shown in Table VI. Both figures and the table show
that increasing parallelism leads to significant speedups. For
example, using 350 compute cores, we can solve the 10M-
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Fig. 2: The tε as a function of the level of parallelism, measured
in terms of cores P. Fig. 2a shows results on the 10M variable
dataset (Table III) while Fig. 2b shows results on the dataset with
d = 500 (Table IV). We normalize tε by its value at the lowest
level of parallelism (7381s, 17502s, 571s, and 1199s, respectively,
for each of the four problems in Fig. 2a and 3488s, 2433s, 2821s,
and 1333s, respectively, in Fig. 2b). We see that increasing the level
of parallelism speeds up convergence.

variable instance of D-optimal Design in 44 minutes, an
operation that would take 133 hours when executed serially.
For the input sizes used in these experiments, the benefit
of parallelism saturates beyond 210 cores and 64 cores, for
Datasets B and C, respectively. The reason is that for this
input size, after increasing the level of parallelism beyond
these values, the cost of computing the gradient at each core
becomes negligible. By comparing Figures 3a and 3b with
Figures 3c and Figure 3d, we see that Parallel FW converges
much faster for Convex Approximation and Adaboost. The
reason is that the objective function in D-Optimal Design
and A-optimal Design does not have a bounded curvature;
therefore, as mentioned in Section IV, FW for these problems
does not have a O( 1

k ) convergence rate.
Next, we move on to experiments on the real datasets,

summarized in Table V. For brevity, we only report D-
Optimal Design for these datasets. Fig. 4 shows the measured
tε for different levels of parallelism. For each dataset, tε is
normalized by the value of tε for 8 cores. Again, we see that
we gain a significant speedup by parallelism.

D. Subsampling the Gradient

In this section, we study the effect of subsampling the
gradient on the performance of FW. We have seen that
parallelism reduces the cost of computation of the gradients.
An alternative is to compute the gradient stochastically by
subsampling only a few partial derivatives and using the
minimal in this sub-sampled set. This reduces the amount
of computation occurring in each iteration. Moreover, such
a stochastic estimation of the gradient still guarantees con-
vergence [31], albeit at a slower rate. Therefore, subsampling
decreases the computation time for each iteration; this has
a similar effect to increasing parallelism, without incurring
additional communication overhead. In contrast to increasing
parallelism, however, subsampling may also increase the num-
ber of iterations till convergence.
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Fig. 3: The objective F as a function of time over Dataset B. We see
that increasing the level of parallelism makes convergence faster. By
comparing Figures 3a and 3b with Figures 3c and 3d we see that FW
for D-Optimal Design and A-Optimal Design converges slower.
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Fig. 4: The summary of paral-
lelism experiments on the real
datasets. For each dataset the tε
is divided by the tε for 8 cores,
which are 15247(s), 3899(s), and
4766(s) for Movielens, MSD,
and HEPMASS, respectively.
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Fig. 5: The comparison be-
tween ADMM and our dis-
tributed Frank-Wolfe algorithm.
Each algorithm uses 400 cores.

We consider two variants of subsampling. In Sampled FW,
we compute each partial derivative ∂F

∂θi
with probability p.

Then, we find the minimum among the computed partial
derivatives. Note that this speeds derivative computations: at
most p ·N partial derivatives are computed, in expectation.
In Smoothened FW, we compute each partial derivative with
probability p, but maintain an exponentially-weighted mov-
ing average (EWMA) between the computed value and past
values: this estimate is used instead to compute the current
minimum partial derivative.

We use Dataset C (Table IV) in this experiment: we
solve the corresponding problems using Sampled FW and
Smoothened FW on 4 cores. The results are shown in Fig. 6.
Values tε are normalized by tε for p = 1. This makes exper-
iments in Figures 6 and 2b comparable: each core computes
the same number of partial derivatives in expectation.

By comparing Figures 6 and 2b, we see that subsampling
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Fig. 6: The measured tε under Sampled and Smoothened FW,
over Dataset C. We normalize tε by the measured tε for 4 cores,
which is reported in Fig. 2. By comparing Figures 6a and 6c with
Fig. 2b, subsampling does not match the benefits of parallelism.
In an ultra-low regime, e.g., p = 0.0005 convergence is very slow.
Smoothened FW can enhance the performance in this case.

matches the benefits of parallelism, at least for large p, for
D-optimal and A-optimal design. In contrast, the benefits of
subsampling for Convex Approximation and AdaBoost are
almost negligible. This is because Parallel FW guarantees a
O( 1

k ) convergence rate for these problems. As a result, though
subsampling reduces the cost of computation per iteration, the
increase in number of iterations negates this advantage. In fact,
when p is in an ultra-low regime, e.g., p = 0.0005, Sampled
FW converges extremely slowly for all problems. Interestingly,
Smoothened FW performs better in this case, ameliorating the
performance deterioration. This is most evident in Figures 6d
and 6c, where tε for Convex Approximation and AdaBoost is
considerably smaller under Smoothened FW.

E. LASSO Experiment
To show the performance of our algorithm on the cases

beyond simplex constrained problems, we solve the LASSO
problem (21). We compare our distributed FW with distributed
ADMM. The input data is synthetic and with N = 100,000 and
d = 1000. First, we solve the following problem:

min
θ

1
2
‖X>θ − p‖2

2 +‖θ‖1,

with distributed ADMM using 400 cores and for different
values of ρ , which is a parameter controlling convergence
(see Section 8.3 of [28]). We then solve the LASSO with
our Distributed FW algorithm, setting K equal to the `1 norm
of the solution obtained by ADMM. For a fair comparison,
we use 400 cores. Fig. 5 shows the value of the squared loss
1
2‖Xθ − p‖2

2 as a function of time for FW and ADMM. As
we see, FW outperforms ADMM.



IX. CONCLUSION

We establishe structural conditions under which FW admits
a highly scalable parallel implementation via map-reduce. FW
has found recent applications in non-convex optimization [31],
and a variant has been applied to combinatorial optimization
[43, 44]; exploring the applicability of our approach in these
areas is an important open problem.
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