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Leveraging Structural Properties for Large-Scale Optimization

by

Armin Moharrer

Doctor of Philosophy in Electrical and Computer Engineering

Northeastern University, April 2021

Dr. Stratis Ioannidis, Advisor

Large scale optimization problems abound in data mining, machine learning, and system
design. We address the challenges posed by such large scale optimization problems by providing
efficient optimization algorithms. The scope of studied problems is quite broad; it includes ap-
plications such as experimental design, computing graph distances (dissimilarity scores), training
auto-encoders, multi-target regression, and the design of cache networks. We leverage the structural
properties present in these problems, e.g., sparsity or separability. In particular, we introduce some
structural properties under which the Frank-Wolfe algorithm (FW) can be distributed over a cluster of
computers. We show that the distributed FW running over 350 workers (CPUs) solves an instance of
experimental design problem with 20M variables in 79 minutes, while the serial implementation takes
48 hours. Furthermore, we study a variant of FW for the design of cache networks. The problem is
NP-hard, but we achieve a 1− 1/e approximation ratio, by optimizing a non-convex relaxation via
FW. We also propose a distributed Alternating Direction Method of Multipliers (ADMM) algorithm
for computing graph distances. We observe speedups of 153 times when running over a cluster with
448 CPUs, in comparison with running over 1 CPU, for graphs with 2.4K nodes. Finally, we study
applications of ADMM in solving robust variants of risk minimization problems; in these variants
we replace the typically chosen mean squared error loss with a general `p norm. We combine model
based optimization with ADMM to minimize the resulting non-smooth and non-convex objectives.
We show that a stochastic variant of ADMM converges with the rate O(log T/T ) and is highly
efficient for optimizing the corresponding model functions.
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Chapter 1

Introduction

1.1 Motivation

Many interesting problems in machine learning, data mining, and system design can be

formulated as (convex or non-convex) optimization problems. The goal in these problems is to

minimize/maximize a design objective, such as the total error over a training dataset in regression

and classification problems [2, 3], informativeness in experimental design [4, 5], or the total expected

delay in the design of cache networks [6, 7].

As a result of drastic growth in the size of data, these optimization problems in practice are

large-scale. For example, the input data used for these problems can be in the order of terabytes,

resulting in problems with millions of terms in their objectives or millions of parameters, e.g., weights

in neural networks or decision variables in design problems. Moreover, regardless of the input data,

in some cases the underlying models are highly complex and have a large number of parameters

themselves; quintessential examples are deep learning architectures, such as AlexNet [8] and ResNet

[9] with about 61M and 23M parameters, respectively. Classic optimization algorithms, such as

gradient descent, the Alternating Direction Method of Multipliers (ADMM), or the Frank-Wolfe

algorithm, are inefficient and extremely slow for solving such large-scale problems.

The existence of these large-scale optimization problems have motivated the study of

parallel or distributed optimization algorithms. They are implemented in distributed frameworks that

leverage the massively parallel computational power of computer clusters. For example, the input

data is distributed over a cluster of workers, e.g., CPUs or GPUs, where workers run local algorithms

on smaller subsets of input data in parallel and communicate sporadically to synchronize or exchange

information. Some promising works have been done in this direction, such as distributed gradient

1



CHAPTER 1. INTRODUCTION

methods [10, 11, 12], or the distributed alternating direction method of multipliers [13, 14, 15], just

to name a few. In fact, in this thesis we also present two such distributed algorithms and show their

scalability in Chapters 3 and 5. However, it is not clear how to parallelize classic optimization algo-

rithms for general problems. Moreover, though parallel algorithms offer computational advantages

through parallelism they also incur communication costs. Therefore, even in cases that parallel or

distributed algorithms exist, one needs to assess their communication costs carefully for problems at

hand, as the performance of these parallel algorithms highly depends on communication patterns

implied by input data or problems. For instance, in order to achieve speedups via parallelism, these

methods often require that the input data to be large only along one dimension but of moderate

size along the other dimensions, as is the case for our distributed algorithms in Sec. 3. As a result,

parallel or distributed algorithms are only interesting if the computational advantages overcome

communications overheads.

Fortunately, many interesting applications have structural properties that give rise to

efficient algorithms. One such property is sparsity. There are different ways that sparsity can arise:

for example, the quantities, e.g., vectors or matrices, that are used to describe the problems or are

computed at intermediate steps have only a few non-zero elements [16, 17, 18]. One immediate

advantage of sparse vectors is that they can be denoted by parsimonious representations [19], e.g.,

the indices of non-zero elements and the corresponding values [20]. In addition, they often offer

further advantages, for instance, matrix computations [21], e.g., matrix inversion [22, 23, 24] or

matrix-vector multiplication [25, 26], that involve sparse vectors can be done efficiently. In addition,

sparsity can arise in the support of functions [13, 20], too; often problems have objectives that are

a summation over a number of terms, where each term is a function of a small subset of the input

data or parameters. As a result, these functions with sparse supports can be computed while having

access to only small subsets of data. Besides computational advantages, these sparsity patterns offer

advantages in terms of communication costs in the case of distributed algorithms. For example,

only a small portion of data needs to be communicated across workers, so that they can evaluate

a function or update their data, or each worker only needs to communicate with a small subset of

workers [17, 20, 27, 28].

Motivated by the potential advantages that sparsity patterns offer for dealing with large-

scale problems, in this thesis we explore sparse structures and their advantages across different

problems in machine learning, data mining, and systems design. In some cases, we propose

distributed algorithms that run in parallel, where we determine computational and communication

complexities in terms of the sparsity parameters. We summarize the the problems that we consider,
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the role of sparsity in deriving efficient algorithms, and whether the algorithms are parallel in

Table 1.1. We next briefly describe these problems and explain how sparsity patterns (mentioned in

Table 1.1) arise.

1.2 Contributions

1.2.1 Distributing Frank-Wolfe via Map-Reduce

The Frank-Wolfe [29] algorithm (FW) is a convex optimization method. It solves con-

strained optimization problems, where the constraint is a compact convex set. It is an iterative

algorithm, where at each iteration it minimizes a linear objective subject to the constraint set. For this

reason, FW is known to be highly efficient [30], as the problems with linear objectives can often be

solved efficiently and in some cases the solutions are sparse. One example is the simplex, i.e., the set

D0 ≡
{
θ ∈ Rn+ :

∑n
i=1 θi = 1

}
. In fact, as we explain in Chapter 3 the solutions that FW generates

in each iteration for the simplex are highly sparse, i.e., they have only one non-zero element. This

enables us to develop distributed and highly scalable algorithms. Here to give the reader intuitions

on how sparsity is leveraged, we briefly describe the experimental design problem, as an application

that can be solved in parallel via our distributed algorithm. In experimental design, a learner wishes

to regress a model from an input data comprising feature vectors xi ∈ Rd and labels yi ∈ R for n

data points (i = 1, . . . , n). The learner has only access to the feature vectors and needs to decide

which labels yi to collect. One formulation of this problem is the D-optimal design problem [31, 32],

which minimizes the negative log entropy of a linear regression model under Gaussian. Formally,

D-optimal design amounts to the following optimization problem: noise:

min
θ∈D0

logdet

(
N∑
i=1

θixix
>
i

)−1

, (1.1)

where θi denotes the portion of experiments for the feature xi. Solving (1.1) via gradient methods,

e.g., FW, requires computing the inverse of the matrix
∑N

i=1 θixix
>
i , which is computationally

expensive, in general. However, considering the sparsity of the solutions generated via FW for the

simplex, the matrix in an iteration is a rank-one update of its value in the previous iteration. We thusly

leverage the Sherman-Morrison formula [22] and we can compute the inverse matrix efficiently

through matrix-vector products.

In Chapter 3 we describe how more problems can be solved efficiently via FW, and how

manipulating the sparsity of FW solutions we can develop distributed algorithms. In particular, we

3
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make the following contributions

• We identify two sparsity-induced properties of the objective under which FW can be paral-

lelized through map-reduce operations.

• We show that several important optimization problems, including experimental design, Ad-

aboost, and projection to a convex hull satisfy the aforementioned properties.

• We implement our distributed FW algorithm on Spark [33], an engine for large-scale distributed

data processing. Our implementation is generic: a developer using our code needs to only

implement a few problem-specific computational primitives; our code handles execution over

a cluster.

• We extensively evaluate our Spark implementation over large synthetic and real-life datasets,

illustrating the speedup and scalability properties of our algorithm. For example, using 350

compute cores, we can solve problems of 10 million variables in 44 minutes, an operation that

would take 133 hours when executed serially.

• We introduce two stochastic variants of distributed FW, in which we only compute a subsample

of the elements of the gradient. We implement these algorithms on Spark and compare their

performance with distributed FW.

On a high level, sparsity here arises as FW solutions for the subproblems with linear

objectives subject to the simplex have only one non-zero element. This allows us to have highly

salable distributed implementations. Moreover, as we show with experimental studies in Chapter 3,

leveraging these sparsity patterns leads to significant speedups, even for serial implementations.

1.2.2 Design of Kelly Cache Networks via Submodular Maximization

Submodular maximization is a class of combinatorial optimization problems that are

known to be NP-hard in general [34]. Intuitively, submodularity captures the notion of diminishing

return, i.e., for a set function, the marginal gain due to adding one element to the set diminishes

as more elements added to the set. Many applications in machine learning, data mining, viral

marketing, and system design, that can be cast as submodular maximization problems; some examples

are facility location [35], influence maximization [36], and data summarization [37]. Due to the

hardness of submodular maximization problems, there has been an active area of research on the

development of approximate algorithms for these problems [38, 39]. In particular, a variant of FW,
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Figure 1.1: Illustrations of a cache network. The graph represents a network of entities (nodes)
capable of storing data, performing computations, and making decisions. Requests r for an item ir

arrive on the nodes of the network with arrival rates λr. The requests are routed over the predetermined
path pr towards the designated server; however, they may terminate upon reaching a node in the
path pr that stores the requested item. At that point, responses are generated that carry the item,
they traverse the path in reverse order and exit the network. As a result, by caching items earlier
in the predetermined paths we can decrease the total traffic over the network. For the design of
such cache networks, we need to find optimal items to store at each cache. Therefore, the problem
has |V | × |R| optimization variables in general, where V andR are the sets of nodes and requests,
respectively. Nonetheless, sparsity naturally arises in this problem; for example, note that each
request r corresponds to a single item ir and travels over a path (e.g., denoted by red line) that
includes only a subset of nodes and edges in the graph. Therefore, the considered cost functions
corresponding to each request only depends on the optimization variables corresponding to the item
ir and the nodes along the path. By leveraging the sparsity in the support of this cost functions we
propose an efficient variant of the Frank-Wolfe algorithm in Chapter 4.

i.e., the continuous-greedy algorithm [40] attains a 1− 1/e approximation ratio to the optimal for

submodular maximization problems over matroid constraints. In Chapter 4, we focus on a system

design application, i.e., cache networks optimization. We show that it can be cast as a submodular

maximization problem. We show that the continuous greedy algorithm similar to FW attains efficient

implementations due to the structure of these problems. Before explaining further, let us briefly

introduce Cache networks.

Cache networks [41, 42, 7] represent a network of entities capable of storing data, perform-

ing computations, and making decisions. The entities are represented as nodes of an undirected graph.

For example consider the cache network illustrated in Fig. 1.1, where requests r for an item ir arrive
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on the nodes of the network with arrival rates λr. The requests are routed over the predetermined

path pr towards the designated server; however, they may terminate upon reaching a node in the

path pr that stores the requested item. At that point, responses are generated that carry the item,

they traverse the path in reverse order and exit the network. As a result, by caching items earlier in

the predetermined paths we can decrease the total traffic over the network. Moreover, we assume

that the nodes have a certain capacity on the number of items that they can store. In Chapter 4, we

propose a model for cache networks, in which the goal is to minimize a class of design objectives

(e.g., the overall expected delay), by determining which items to store at each node, while satisfying

the constraints on node capacities. Formally, the constraints can be written as∑
i

xvi ≤ cv, for all v ∈ V, (1.2)

where the set V represent the graph nodes, cv ∈ N are the node capacities, and xvi ∈ [0, 1] are

decision variables determining the probability of caching the item i on node v ∈ V . Note that the

constraints (1.2) are similar to the simplex, with only difference that the 1 on the right hand-side of

the inequality is now replaced with cv. The so-called continuous greedy algorithm, which is similar

to FW, optimizes linear objectives subject to (1.2); this can again be done efficiently. Moreover, the

objective in cache networks problems is usually the total expected delay, which is a summation over

some terms, where each is a function of the total load on an edge in the network, i.e., the overall

rates for requests passing through that edge. As a result, terms have sparse supports, as the load on

each edge only depends on a subset of decision variables xvi. Leveraging the sparsity offered by

the continuous greedy algorithm and the sparsity in the support of the functions in the objective we

obtain efficient algorithms for this problem (see Sec 4.2.2). As an additional means of improving

efficiency, we also develop a method for reducing sampling in the algorithm.

In summary, we make the following contributions in Chapter 4

• We study the problem of optimizing the placement of objects in caches in Kelly cache networks

of M/M/1 queues, with the objective of minimizing a cost function of the system state. We

show that, for a broad class of cost functions, including packet delay, system size, and server

occupancy rate, this optimization amounts to a submodular maximization problem with matroid

constraints. This result applies to general Kelly networks with fixed service rates; in particular,

it holds for FIFO, LIFO, and processor sharing disciplines at each queue.

• We leverage this connection to submodular optimization to study approximation algorithms for

the resulting (NP-hard) problems. It is known that the classic greedy algorithm [38] produces a
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solution with a 0.5 approximation ratio, while the so-called continuous-greedy algorithm [40]

yields a ratio of 1 − 1/e ≈ 0.63. We prove that the 0.5-approximation ratio of the greedy

algorithm is tight,

• The so-called continuous greedy algorithm [40] attains a 1 − 1/e approximation for this

NP-hard problem. However, it does so by computing an expectation over a random variable

with exponential support via randomized sampling. The number of samples required to attain

the 1−1/e approximation guarantee can be prohibitively large in realistic settings. Our second

contribution is to show that, for Kelly networks of M/M/1 queues, this randomization can

be entirely avoided: a closed-form solution can be computed using the Taylor expansion of

our problem’s objective. In particular, we leverage the sparsity of the support of the terms

in the design objective along with their product-form structure to efficiently compute the

Taylor expansion of the objective. To the best of our knowledge, we are the first to identify

a submodular maximization problem that exhibits this structure, and to exploit it to eschew

sampling.

• Finally, we extend our results to networks of M/M/k and symmetric M/D/1 queues, and prove a

negative result: submodularity does not arise in networks of M/M/1/k queues. We extensively

evaluate our proposed algorithms over several synthetic and real-life topologies.

To sum up, in the cache networks problems that we consider sparsity patterns arise in

the support of the functions, which correspond to total traffic over edges. Moreover, the decision

variables are also sparse, as the result of sparsity in graphs that represent the networks and the fact

that the predetermined paths (e.g., the shortest path between two nodes) for requests only include

few nodes in the graphs. The sparsity patterns along with the product form of the design objectives

allow us to compute the Taylor approximations of the objective efficiently. Therefore, we obtain an

efficient algorithm with the 1− 1/e approximation guarantee for the NP-hrad cache design problem.

1.2.3 Massively Distributed Graph Distances

Graph distance (or similarity) scores are used in several graph mining tasks, including

anomaly detection, nearest neighbor and similarity search, pattern recognition, transfer learning, and

clustering. For example, consider two graphs GA and GB in Fig. 1.2, in the graph distances problem

we are interested in computing a value, which shows structural dissimilarities between the two graphs.

In fact, the graphs in Fig. 1.2 are isomorphic, i.e., there is a one-to-one correspondence between the
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GA GB

Figure 1.2: An example of two isomorphic graphs. Two graphs are isomorphic, if there is a one-
to-one correspondence between the nodes in GA and GB , s.t., two nodes are adjacent in GA if
and only if their corresponding nodes in GB are adjacent. Note that the distance between two
isomorphic graphs is zero. In particular, for two isomorphic graphs there is a permutation matrix
P ∈ {P ∈ {0, 1}n×n|P1 = 1, P>1 = 1}, s.t.,BP> = AP , whereA,B ∈ Rn×n are the adjacency
matrices for the n-node graphs GA and GB . We consider a formulation that involves minimizing
‖AP − PB‖, over the set of doubly stochastic matrices {P ∈ [0, 1]n×n|P1 = 1, P>1 = 1}.
Sparsity naturally arises here, as graphs usually have only few edges, in practice. Moreover, as
explained in Chapter 5, we introduce sparsity on the support of the matrix P . As a result, each
element in the matrix AP − PB depends only on a small subset of the coordinates of the variable P .
We leverage the sparsity to design an efficient distributed optimization algorithm.

nodes in GA and GB , s.t., two nodes are adjacent in GA if and only if their corresponding nodes

in GB are adjacent. Therefore, the distance between GA and GB is zero, as there is no structural

differences between them. Unfortunately, determining whether such one-to-one correspondence

exists between nodes of two given graphs is a combinatorial problem and computationally hard. In

this thesis, we focus on a convex relaxation that was proposed by Bento and Ioannidis [1]. In a

nutshell, they propose to solve the following problem

min
P∈Rn×n≥0 :P1=1,P>1=1

‖AP − PB‖p, (1.3)

where A,B are the adjacency matrices of GA, GB , respectively, n is the number of nodes in the

graph, ‖·‖p is an element-wise p-norm, and P is a matrix that captures the one-to-one correspondence.

For instance, if the (i, j)-th element of P is 1, then the node i in GA corresponds to the node j in

GB. The goal of (1.3) is to find a one-to-one correspondence between nodes of the graphs, s.t., the

edge discrepancy between them is minimized. Consider the case, where p = 1, then we see that

the objective is a summation over n2 terms, i.e., the absolute value of the elements of AP − PB.
Moreover, under the assumption that the graphs GA, GB are sparse, i.e., each node is only connected

to few other nodes, the (i, j)-th element of the matrix AP − PB only depends on few elements of

P. As we explain in Chapter 5, we can further introduce sparsity patterns on the support of P . In

Chapter 5 we propose a distributed ADMM-based algorithm for the graph distances problem (1.3),
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where the sparsity is key in the development; it is also essential for the performance of the distributed

algorithm.

In particular, for the graph distances problem we make the following contributions in

Chapter 5.

• We propose an ADMM-based distributed algorithm for solving (1.3) for all p ≥ 1. Our

solution for the case p > 1 uses a nested-ADMM (Alg. 8 and 9) in combination with a novel

distributed bisection algorithm (Alg. 10) as building blocks. The bisection algorithm computes

the proximal operator of a p-norm via repeated map-reduce operations, and is therefore of

interest in its own right.

• We implement our algorithm in OpenMP [43] and Spark [33]. Our publicly available imple-

mentation scales to hundreds of CPUs. Over a 448 CPU cluster, we attain speedups of as much

as 154×, in comparison to using a single CPU.

In summary, for the problem of graph distances in (1.3), sparsity arises in graphs GA, GB, and the

support of the matrix P. This enables us to propose distributed algorithms. In particular, in Chapter 5,

we explicitly bound the total of number of exchanged messages for our proposed algorithm in terms

of these these sparsity parameters.

1.2.4 Robust Regression via Model-Based Optimization

Mean Squared Error (MSE) loss problems are ubiquitous in machine learning and data

mining. Such problems have the following form:

min
θ

1

n

n∑
i=1

‖F (θ;xi)‖22 + g(θ), (1.4)

where function F : Rd × Rm → RN captures the contribution of a sample xi ∈ Rm, i = 1, . . . , n,

to the objective under the parameter θ ∈ Rd and g : Rd → R is a regularizer. Example applications

include training auto-encoders [44, 45], matrix factorization [46], and multi-target regression [47]..

For instance, in training auto-encoders [48, 44], we are given n data points xi ∈ Rm,

i ∈ [n]. Auto-encoders embed these datapoints in a m′−dimensional space, m′ � m, as follows.

The mapping to Rm′ is done by a possibly non-linear function (e.g., a neural network) with denc

parameters Fenc : Rdenc × Rm → Rm′ , called the encoder. An inverse mapping, the decoder Fdec :

Rddec × Rm′ → Rm with ddec parameters re-constructs the original points given latent embeddings.
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Both the encoder and the decoder are trained jointly over a dataset {xi}ni=1 by minimizing the

reconstruction error; cast in our robust setting, this amounts to minimizing (1.4) with

F (θ;xi) = xi − Fdec (θdec;Fenc(θenc;xi)) , (1.5)

where θ = [θdec; θenc] ∈ Rdenc+ddec comprises the parameters of the encoder and the decoder.

The MSE loss in (1.4) is computationally convenient, as the resulting problem is smooth

and can thus be optimized efficiently via gradient methods, such as stochastic gradient descent

(SGD). However, it is well-known that the MSE loss is not robust to outliers [2, 49, 50, 51, 52], i.e.,

samples far from the dataset mean. Intuitively, when squaring the error, outliers tend to dominate

the objective. To mitigate the effect of outliers, a classic approach is to introduce robustness

by replacing the squared error with either the `2 norm [49, 50, 53, 44, 54, 45] or the `1 norm

[55, 56, 52, 57, 58, 59, 60, 51]. This has been applied to several applications, including feature

selection [50, 53], PCA [57, 58, 59, 49], K-means clustering [54], training autoencoders [44, 45],

matrix factorization [55, 56, 52, 51], and regression [60]. Motivated by this approach, we study the

following robust variant of Problem (1.4):

min
θ

1

n

n∑
i=1

‖F (θ;xi)‖p + g(θ), (1.6)

where ‖ · ‖p denotes an `p norm (p ≥ 1). We are particularly interested in cases where F is not

affine and, in general, Problem (1.6) is non-convex. This includes, e.g., feature selection [50], matrix

factorization [51, 55], auto-encoders [44], and deep multi-target regression [60, 47].

A significant challenge behind solving Prob. (1.6) is that its objective is not smooth, pre-

cisely because the `p norm is not differentiable at 0 ∈ RN . For non-convex and non-smooth problems

of the form (1.6), where the objective contains a composite function, Model-Based Optimization

(MBO) methods [61, 62, 63, 64, 65, 66] come with good experimental performance as well as theoret-

ical guarantees. In particular, these MBO methods define a convex (but non-smooth) approximation

of the main objective, called the model function. They then iteratively optimize this model function

plus a proximal quadratic term. Under certain conditions, MBO converges to a stationary point of

the non-convex problem [61].

In Chapter 6, we use MBO to solve Problem (1.6) for arbitrary `p norms. In particular,

each MBO iteration results in a convex optimization problem. We solve these sub-problems using

a novel stochastic variant of the Online Alternating Direction Method (OADM) [67], which we

call Stochastic Alternating Direction Method (SADM). Using SADM is appealing, as its resulting
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steps have efficient gradient-free solutions; in particular, we exploit a bi-section method [68] (c.f.

Sec. 5.3.2 in Chapter 5) for finding the proximal operator of `p norms. We provide theoretical

guarantees for SADM. As an additional benefit, SADM comes with a stopping criterion, which is

hard to obtain for gradient methods when the objective is non-smooth [69].

Overall, we make the following contributions in Chapter 6:

• We study a general outlier-robust optimization that replaces the MSE with `p norms. We show

that such problems can be solved via Model-Based Optimization (MBO) methods.

• We propose SADM, i.e., a stochastic version of OADM, and show that under strong convexity

of the regularizer g, it converges with a O(log T/T ) rate when solving the sub-problems

arising at each MBO iteration.

• We conduct extensive experiments on training auto-encoders and multi-target regression. We

show (a) the higher robustness of `p norms in comparison with MSE and (b) the superior

performance of MBO, against stochastic gradient methods, both in terms of minimizing the

objective and performing down-stream classification tasks. In some cases, we see that the

MBO variant using SADM obtains objectives that are 29.6× smaller than the ones achieved

by the competitors.

In summary, we provide robust alternative formulations to MSE minimization in Chapter 6.

Nonetheless, this results in non-smooth non-convex problems for which gradient methods are not

efficient. However, we show that MBO methods jointly with a novel variant of ADMM provide

efficient methods. The key in our approach is the efficient proximal operators for `p norms, which

we introduce in Chapter 5.

1.3 Conclusion

We introduced a diverse set of applications that can be cast as optimization problems.

We further briefly explained that these problems have structural properties that can be leveraged to

develop efficient optimization methods. The remainder of this thesis is organized as follows: we

introduce classic topics related to convex optimization in Chapter 2. We present our distributed

Frank-Wolfe algorithm in Chapter 3. We show an application of cache networks that can be solved

via a variant of the Frank-Wolfe algorithm in Chapter 4. We explain our results for computing graph

distances via ADMM in Chapter 5. Finally, we present a general robust formulation for regression
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Chapter 2: 
Technical Preliminary

Chapter 3: 
Distributing Frank-Wolfe 
via Map-Reduce

Chapter 4: 
Design of Kelly Cache Networks 
via Submodular Maximization

Chapter 5: 
Massively Distributed Graph 
Distances 

Chapter 6: 
Robust Regression via 
Model Based Optimization 

Figure 1.3: Chapter Dependencies.

Problem Sparsity Pattern Parallel Chapter

Distributing Frank-Wolfe via

Map-Reduce

Sparsity in intermediate solutions YES 3

Design of Kelly Cache Networks

via Submodular Maximization

Sparsity in the support of func-

tions

NO 4

Massively Distributed Graph Dis-

tances

Sparsity in the support of func-

tions + sparse vector representa-

tion

YES 5

Robust Regression via Model-

Based Optimization

Separability of objective NO 6

Table 1.1: Summary of problems and the role of sparsity in obtaining efficient algorithms.

problems along with algorithms to solve it in Chapter 6. For a summary of chapters, see Table 1.1

and Fig. 1.3.
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Chapter 2

Technical Preliminary

The focus of this thesis is on developing efficient optimization algorithms for a variety

of problems. To that end, we review basic definitions related to convex optimization in Sec. 2.1;

we introduce the notion of convexity in sets and functions along with formal definition of convex

optimization problems. We then review some well-known convex optimization algorithms that are

key for methods we develop in this thesis, in Sec. 2.2. We then review a class of combinatorial

optimization problems known as submodular maximization in Sec. 2.3. Finally, we briefly introduce

distributed frameworks that can be used for implementing distributed algorithms, in Sec 2.4.

2.1 Optimization

The following topics are classic in the convex optimization literature, the following defini-

tions and results are mostly adopted from Boyd and Vandenberg [31] and Bertsekas [70]; we refer

interested readers to these sources for more information.

Convex set. A set D ∈ RN is called convex if the line segment defined by any two points in the set

lies within the set. Formally, for every θ1, θ2 ∈ D and α ∈ [0, 1] we have:

(1− α)θ1 + αθ2 ∈ D.

Given m points θ1, . . . , θm ∈ RN , a point θ ∈ RN is called a convex combination of

θ1, . . . , θm if there exist α1, . . . αm ∈ R≥0, s.t.,
∑m

i=1 αi = 1 and

θ =

m∑
i=1

αiθi.
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The set of all convex combinations of a set D is called the convex hull of D, and is denoted by

conv(D). It is straightforward to show that the convex hull of every set is a convex set. Moreover,

the convex hull of a set is also the smallest convex set that contains it.

Convex function. A function F : RN → R is convex if (a) its domain domF is a convex set and (b)

for all θ1, θ2 ∈ domF and α ∈ [0, 1] it holds that

F ((1− α)θ1 + αθ2) ≤ (1− α)F (θ1) + αF (θ2). (2.1)

Eq. (2.1) is known as Jensen’s inequality [71]. In other words, the line segment between the points

(θ1, F (θ1)), (θ2, F (θ2)) lies above the graph of the function F . A function F is called strongly

convex if the above inequality holds with strong inequality for α 6= 0, 1.

A convex function is continuous but not necessarily differentiable. When F is differentiable,

convexity is equivalent to the following first-order condition [72]:

F (θ2) ≥ F (θ1) +∇F (θ1)>(θ2 − θ1) ∀θ1, θ2 ∈ domF. (2.2)

Moreover, if F is differentiable and strongly convex there exists a constant β ∈ R+, s.t.,

F (θ2) ≥ F (θ1) +∇F (θ1)>(θ2 − θ1) + β‖θ2 − θ1‖22 ∀θ1, θ2 ∈ domF. (2.3)

In other words, there is a quadratic lower-bound for F . In this case, we call F β-strongly convex.

Lipschitz continuity. For a subset S ⊂ RN a function F is Lipschitz continuous on S w.r.t. the

Euclidean norm ‖ · ‖ if there exists a constant L such that

‖F (θ1)− F (θ2)‖ ≤ L‖θ1 − θ2‖, ∀θ1, θ2 ∈ S. (2.4)

Lipschitz continuity measures smoothness of the function F .

Curvature. A concept closely related to Lipschitz continuity is the curvature, which is a measure of

nonlinearity of the convex function F over the convex domain D [30]. Formally, the curvature Cf of

a convex and differentiable function F is defined as:

CF ≡ sup
θ1,s∈D,α∈[0,1],θ2=(1−α)θ1+αs

2/α2
(
F (θ2)− F (θ1)− (θ2 − θ1)>∇F (θ1)

)
. (2.5)

From (2.2) we know that if F is convex and differentiable, then F (θ2) lies above its

first-order Taylor approximation F (θ1) + (θ2 − θ1)>∇F (θ1). Hence, Cf measures the maximum

deviation of F at θ2 from its linearization at θ1, scaled with the inverse of the step-size α. For

example, if F is a linear function, its curvature CF is zero.
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The curvature ofF is related to the Lipschitz continuity constant of the gradient ofF : if∇F
is L-Lipschitz continuous on D then CF ≤ (diam(D))2 L, where diam(D) ≡ supθ1,θ2∈D ‖θ1 − θ2‖
denotes the diameter of the set D [30].

Lower Semi-continuous functions. The function F : RN → R is lower semi-continuous at a point

θ0 if, for every ε > 0, there exists a neighborhood Uθ0 around θ0, s.t., for all θ ∈ Uθ0 the following

holds: F (θ) ≥ F (θ0) + ε. For more details on lower semi-continuity, refer to Chapter 7 in the book

by Kurdila and Zabarankin [73].

Quasi-convex functions. A function F : RN → R is quasi-convex if (a) its domain domF and (b)

all its t-level subsets, i.e., St = {θ ∈ domF |F (θ) ≤ t} are convex sets. There is a counterpart of

Jensen’s Inequality, i.e., (2.1), for quasi-convex functions; the following holds for all quasi-convex

function and also implies quasi-convexity for all functions with convex domains:

F ((1− α)θ1 + αθ2) ≤ max(F (θ1), F (θ2)) ∀θ1, θ2 ∈ domF, α ∈ [0, 1]. (2.6)

It is easy to see that all functions that satisfy (2.6) also meet (2.1), i.e., all convex functions are also

quasi-convex. Moreover, differentiable quasi-convex functions also satisfy a property similar to (2.2).

In particular, for a differentiable function F : RN → R with a convex domain, the quasi-convexity is

equivalent to satisfying the following

∇F (θ1)>(θ2 − θ1) ≤ 0 ∀θ1, θ2 ∈ domF, s.t., F (θ2) < F (θ1). (2.7)

Convex optimization. A general convex optimization problem has the form:

min
θ∈D

F (θ), (2.8)

where F : RN → R is a convex function and D is a convex set. A property that makes convex

optimization appealing is that every local minimum is a global minimum. Furthermore, for convex

optimization the necessary and sufficient optimality condition is given by the following theorem.

Theorem 2.1.1 (Bertsekas, [70]). For a convex and differentiable function F , the point θ∗ is a

minimum of F over a convex set D if and only if

∇F (θ∗)>(θ − θ∗) ≥ 0, ∀θ ∈ D.
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2.1.1 Constrained Optimization and Optimality Conditions

Consider a general optimization problem of the following form:

Maximize F (θ) (2.9a)

Subj. to gj(θ) ≥ 0 j = 1, . . . , r (2.9b)

hi(θ) = 0 i = 1, . . . ,m, (2.9c)

where F : Rn → R, gj : Rn → R, j = 1, . . . , r, and hi : Rn → R, i = 1, . . . ,m are continuously

differentiable functions. Here we provide a statement of the most common first-order necessary

optimality condition known as KKT condition. First let us define a regular point:

Definition 2.1.1. Regular point: If the gradient of equality constraints and active inequality con-

straints are linearly independent at θ∗, then θ∗ is called a regular point.

Now, let us formally define Karush-Kuhn-Tucker (KKT) points which we use extensively

throughout this paper and in stating optimality conditions:

Definition 2.1.2. A point θ∗ ∈ Rn is called a KKT point for Problem (2.9) if there exist Lagrangian

variables ν∗ ∈ Rm and µ∗ ∈ Rr, such that:
∇xL(θ∗,µ∗,ν∗) = 0

hi(θ
∗) = 0 ∀i ∈ {1, . . . ,m}

gj(θ
∗) ≥ 0 ∀j ∈ {1, . . . , r}

µ∗j ≥ 0 ∀j ∈ {1, . . . , r}

µ∗jgj(θ
∗) = 0 ∀j ∈ {1, . . . , r}.

where L(θ,µ,ν) , F (θ) +
∑

i νihi(θ) +
∑

j µjgj(θ) is called the Lagrangian function.

Proposition 2.1.1.1. (First-order KKT Necessary Conditions) Let θ∗ be a local minimum of Prob-

lem (2.9), and assume θ∗ is regular. Then θ∗ is a KKT point.

Using the second derivatives of the Lagrangian function, we can state the sufficient

condition for optimality.

Proposition 2.1.1.2. (Second-order Sufficiency Conditions) Assume F , gj , ∀j = 1, . . . , r, and

hi, ∀i = 1, . . . ,m are twice continuously differentiable, and θ∗ is a KKT point with corresponding

Lagrange variables µ∗ and ν∗. In addition let

V T∇2
xxL(θ∗,µ∗,ν∗)V < 0,
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for all V 6= 0 such that

∇hi(θ∗)TV = 0, ∀i = 1, . . . ,m,

∇gj(θ∗)TV = 0, ∀j ∈ A(θ∗).

In addition assume we have strict complementary slackness, i.e.,

µj > 0 ∀j ∈ A(θ∗)

where A(θ∗) is set of active inequality constraints in θ∗, i.e.,

A(θ∗) , {j | gj(θ∗) = 0}

Then θ∗ is a strict local maximum of Problem (2.9).

For further information on other forms of necessary and sufficient conditions for optimality,

refer to the book by Bertsekas [70].

2.2 Methods for Convex Optimization

In the previous section, we reviewed some basic definitions of convexity and introduced

the class of convex optimization problems (2.8). The study of convex optimization algorithms for

solving these problems has been an active area of research. Here we review some algorithms that

we use in later chapters of this thesis. For a more detailed discussion and other convex optimization

algorithms, such as the barrier method, the interior-point methods, or Newton’s method we refer the

readers to Boyd and Vandenberg [31] and Bertsekas [70].

2.2.1 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) [74] is a popular algorithm suited for unconstrained

optimization problems of the form

Minimize F (θ) =

N∑
i=1

1

N
Fi(θ), (2.11)

where Fi(θ) = L(xi, θ) + r(θ). The functions L : Rm × Rd → R, r : Rd → R are convex,

differentiable and Lipschitz continuous, and each xi is, e.g., a feature vector of the i-th datapoint in

some dataset. Usually, L is a loss function (e.g., for logistic regression it would be logistic loss) and

r is a regularization term, e.g., r(θ) = λ‖θ‖22.
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SGD solves (2.11) by iteratively performing a sampled form of gradient descent. In

particular, the gradient is approximated via the contribution of only one randomly chosen term Fj to

∇F : formally, each iteration k + 1 of the algorithm is:

θk+1 = θk − α∇Fj(θk),

where j ∈ {1, . . . , N} is drawn uniformly at random (u.a.r.) and independently of previous iterations.

ParallelSGD, proposed by [75], parallelizes SGD in the following way: assume that there

are P workers, e.g., processors or threads, available. Each worker p independently runs SGD for T

iterations and returns a solution θp. The final solution returned by the algorithm is the average of the

solutions found by the workers:

θ̂ = 1/P
P∑
p=1

θp. (2.12)

The most direct implementation requires the storage of the whole dataset on each worker; however,

as it is discussed in [75] this can be avoided in practice, as each worker only touches T datapoints,

selected u.a.r.; these can be pre-sampled to avoid transferring all N datapoints to a worker.

Despite the simplicity of ParallelSGD, the following strong convergence bound holds (here

g(θ) = λ‖θ‖22):

E
θ̂∈Q

[F (θ̂)]−min
θ
F (θ) ≤ 8αG2

√
Pλ

√
L∇F +

8αG2L∇F
Pλ

+ 2αG2,

whereQ is the distribution of θ̂, under P workers and T = logP−(logα−log λ)
2αλ iterations, and G,L∇F

are upper-bounds for the Lipschitz continuity constants of L,∇F, respectively.

This and different implementations of distributed SGD [11, 76, 77, 78] suffer from several

drawbacks: first of all, the algorithm heavily depends on a separable objective function, while many

problems of interest do not have this form (see, e.g., D-OPTIMALDESIGN and A-OPTIMALDESIGN

in Section 3.3). Second, it requires the communication and per-worker storage of the whole vector θ,

which can be large; this can be avoided when each function Fi depends on a few coordinates of θ

[76, 11, 78], but not when the functions F1, . . . , FN have dense support. Moreover, SGD requires a

differentiable objective, which further limits the problems that it can solve. For example, it cannot be

applied to problems with the widely-used `1 regularization term.

2.2.2 Frank-Wolfe

Frank-Wolfe (FW) [29] has attracted interest recently due to its numerous computational

advantages [79, 80, 81, 82, 18, 30]. It maintains feasibility throughout execution while being
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projection-free, and minimizes a linear objective in each step; the latter yields sparse solutions for

several interesting constraint sets, which often accelerates computation [18, 16, 30].

In particular, the Frank-Wolfe algorithm (FW) [29] solves the convex optimization prob-

lems of the form:

Minimize F (θ)

subj. to: θ ∈ D,

where F : RN → R is a convex function and D is a convex compact subset of RN . The algorithm

selects an initial feasible point θ0 ∈ D and proceeds as follows:

sk = arg min
s∈D

s> · ∇F (θk), (2.13)

θk+1 = (1− γk)θk + γksk, (2.14)

for k ∈ N, where γk ∈ [0, 1] is the step size. Basically, at each iteration it finds a feasible point

sk ∈ D that minimizes the first-order Taylor approximation of the function F around the current

solution θk. This is an advantage of FW as it reduces the optimization of a general form convex

function F to the optimization of a linear function, subject to the same constraint set. Then, it adapts

the solution by finding a convex combination of the points θk, sk ∈ D. As a result, it maintains the

feasibility of the solution θk at all iterations k ∈ N.

2.2.3 Alternating Directions Method of Multipliers

The Alternating Directions Method of Multipliers (ADMM) was proposed by Gabay and

Mercier [83, 84] Glowinski and Marroco [85]. Interest in ADMM surged after the seminal work

by Boyd et al. [13], which showed that it can be applied to a variety of problems and proposed

distributed implementations.

ADMM solves problems of the form

Minimize F (θ1) + g(θ2) (2.15a)

subj. to Aθ1 +Bθ2 = C, (2.15b)

where the functions F : RN → R, g : Rm → R are convex, A ∈ Rp×N , B ∈ Rp×m, and C ∈ Rp.
ADMM forms the augmented Lagrangian:

L(θ1, θ2, y) = F (θ1) + g(θ2) + y>(Aθ1 +Bθ2 − C) + ρ/2‖Aθ1 +Bθ2 − C‖22,
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where y ∈ Rp is the dual variable associated with (2.15b). ADMM minimizes the augmented

Lagrangian w.r.t. the primal variables θ1, θ2 alternatively, i.e., keeping one fixed and optimizing w.r.t.

other one. Then, it updates the dual variable via gradient ascent. Formally, the algorithm proceeds as

follows:

θk+1
1 := arg min

θ1

L(θ1, θ
k
2 , y

k)

θk+1
2 := arg min

θ2

L(θk+1
1 , θ2, y

k) for k ∈ N

yk+1 := yk + α(Aθk+1
1 +Bθk+1

2 − C).

Note that this is similar to Dual Ascent, but allows us to divide the primal variables to two sets and

optimize them alternatively.

Stopping criteria. Primal and dual residual are typically used as a certificate of convergence in

ADMM [13]; the former measures the feasibility of the current solution, while the latter is an

indicator of the current optimality. Formally, at the k-th iteration of ADMM, the primal residual is

the vector rk ∈ Rp, defined as

rk = Aθ1 +Bθ2 − C. (2.16)

The dual residual is the vector sk ∈ RN, is defined as

sk = ρA>B
(
θk2 − θk−1

2

)
. (2.17)

The iterations of ADMM terminate, once the primal and dual residuals are smaller than a certain ε.

Consensus ADMM can be used to parallelize optimization problems with a separable

objective function, i.e., problems of the form:

Minimize
N∑
i=1

Fi(θ) + g(θ).

Usually, each term Fi : Rd → R represents a loss function associated with the i-th datapoint,

g : Rd → R is a regularization term, e.g., `1 penalty term, and θ ∈ Rd. This problem can be

reformulated as:

Minimize
N∑
i=1

Fi(θi) + g(z) (2.18a)

subj. to θi = z i = 1, . . . , N, (2.18b)
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which is known as the consensus problem. The ADMM steps for (2.18) take the form:

θk+1
i := arg min

θi

Fi(θi) + (yki )>(θi − zk) + ρ/2‖θi − zk‖22 (2.19)

zk+1 := arg min
z

g(z) +

N∑
i=1

(
−(yki )>z + ρ/2‖θk+1

i − z‖22
)

(2.20)

yk+1
i := yki + ρ(θk+1

i − zk+1). (2.21)

Note that here the optimization w.r.t. each θi and adaptation of yi can be done independently by a

separate worker, i.e., a core or a thread. Also, the second step (2.20) can be done by a central unit in

case d is small. This step can be further parallelized again when F1, . . . , FN depend on few variables

[13].

ADMM offers several advantages. First, it can solve convex optimization problems with

non-differentiable terms in the objective. In particular, it reduces the optimization of any convex

function plus a `1 regularization term to the optimization of a quadratic term plus the `1 regularization

term, which has a closed-form solution. Moreover, it can parallelize other generic optimization

problems (see Sections 7 and 8 of [13]). However, it again assumes a separable objective function,

which restricts the class of problems that it can solve. Finally, Consensus ADMM may not scale

where the variable θ is high-dimensional and the functions F1, . . . , FN have dense support.

2.2.4 Distributed Stochastic Dual Coordinate Ascent

Distributed Stochastic Dual Coordinate Ascent (DSDCA) is another parallelizable opti-

mization algorithm, which solves problems in their dual domain [86]. DSDCA solves problems of

the form:

Minimize
N∑
i=1

Fi(θ
>xi) + g(θ), (2.22)

where functions Fi : R→ R, i = 1, . . . , N, are convex and Lipschitz continuous, g : Rd → R is a

β-strongly convex function, and x1, . . . , xN ∈ Rd are feature vectors. In (2.22), similar to (2.11),

each Fi, i = 1, . . . , N, denotes a loss function and g represents a regularization term; here, each loss

term Fi is explicitly a function of the linear term θ>xi.

Let us denote the convex conjugate of Fi and g by F ∗i and g∗, respectively. The dual

problem of (2.22) is given by

max
α

N∑
i=1

−F ∗i (−αi)− g∗
(

N∑
i=1

αixi

)
.
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In order to solve this problem, DSDCA at each iteration updates a randomly selected subset of the

dual variables α1, . . . , αN via gradient ascent.

The separable form of the dual problem allows its solution to be parallelized: assume

that the dataset xi, i = 1, . . . , N, is distributed between P workers. At iteration k of DSDCA each

worker p iteratively updates m randomly chosen dual variables corresponding to the datapoints that

it holds:

αk+1
i = αki + ∆i.

The step-size ∆i is given by maximizing the following lower-bound of the dual function, which is a

result of strong convexity of g (see (2.3)):

∆i = max
∆α
−F ∗i (−(αki + ∆α))−∆αx>i θ

k − β(∆α)2‖xi‖22,

where θk = ∇g∗(
∑N

i=1 α
k
i xi). A central unit computes θk by evaluating the gradient function

∇F ∗ : Rd → Rd.

Interestingly, it can be verified that for the optimal primal and dual solutions, i.e., θ∗ and

α∗, the following holds [86]:

θ∗ = ∇g∗(
N∑
i=1

α∗i xi).

Therefore, as αk converges to α∗, the primal solution θk also converges to its optimal value θ∗.

The main advantage of DSDCA over SGD and ADMM is its convergence rate: studies

have shown that coordinate-ascent in the dual domain outperforms SGD [87, 88, 89, 86]. Therefore,

when the objective has the particular form (2.22), DSDCA is a more efficient alternative. However,

similar to SGD and ADMM, its applicability is curbed because of the separable objective assumption.

Furthermore, just like SGD and ADMM, if the vector θ is high-dimensional, DSDCA is both

computation and communication intensive.

2.2.5 Bi-section Method

Bi-section method is a classic root-finding method. It is different from the optimization

methods we have covered so far in this section, this is in the sense that it is not an optimization

algorithm on its own; however, it is useful for solving some optimization problems. Some examples

are finding the proximal operators (see Sec. 5.3.2 and [68]) or solving quasi-convex problems (see

Sec. 4.2.5 in [31]), we review the latter below.
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Algorithm 1 Bi-section method
1: Input: Points x1, x2 ∈ R, s.t., f(x1)f(x2) < 0, accuracy ε < 1

2: xl := x1, xu := x2

3: for i = 1, . . . , d− log εe do

4: xm := xl+xu

2

5: if f(xl)f(xm) < 0 then

6: xu := xm

7: else if f(xm)f(xu) < 0 then

8: xl := xm

9: else

10: return xm

11: end if

12: end for

13: return xm

More formally, the bi-section method finds the solution to equations of the form

f(x) = 0,

where f : R → R is a continuous function defined on an interval [x1, x2], s.t., f(x1)f(x2) < 0.

Based on the intermediate mean value theorem, there exists a root x∗ ∈ [x1, x2]. The bi-section

method proceeds in iterations, where at each iteration a search interval [xl, xu] containing x∗ is given;

initially this interval is set as xl := x1 and xu := x2. Then at each iteration, it checks the function

value for the point in the middle of the interval, i.e., xm = xl+xu
2 , and updates the search interval. In

particular, if f(x1)f(xm) < 0, it sets xu := xm, and xl = xm, otherwise. Also, in the unlikely case

that f(xm) = 0, the bi-section method returns x∗ = xm. We summarize the steps of the bi-section

method in Alg. 1. Note that in each iteration the interval is halved. Therefore, the bisection method

finds a solution within ε from the root in dlog2(xu−xlε )e rounds.

Bi-section Method for Quasi-convex Optimization. Here we explain an application of the bi-

section method for quasi-convex optimization, i.e., the following class of problems:

min
θ∈D

F (θ), (2.23)

where F is a quasi-convex function (see the definition in Sec. 2.1) and D is a convex set. Quasi-

convex optimization problems are non-convex, in general. However, a variation of the bi-section

method can be used to find a local minimum.
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The key in using the bi-section method is the following property of quasi-convex functions;

there exists a class of convex functions φt : RN → R, indexed by t ∈ R, s.t., F (θ) ≤ t implies that

φt(θ) ≤ 0, and vice-versa. In other words, the t-level subsets of a quasi-convex function F can be

represented by the 0-level subsets of convex functions φt. More formally, for all θ ∈ RN , t ∈ R,

F (θ) ≤ t, we have that φt(θ) ≤ 0. Also, for all θ ∈ RN , t ∈ R and φt(θ) ≤ 0, it holds that

F (θ) ≤ t. Note that one choice for φt is the characteristic function of the t-level subset of F, i.e.,

φt(θ) = χSt(θ), where χSt : RN → {0,∞}. However, the choice for the family of functions φt is

not unique.

Let us denote the optimal solution for (2.23) by F ∗ , minθ∈D F (θ). Also, assume that we

are given an interval [Fl, Fu],, s.t., Fl ≤ F ∗ ≤ Fu. Then consider the following feasibility problem

Minimize Const. (2.24a)

Subj. to: φFm(θ) ≤ 0 (2.24b)

θ ∈ D, (2.24c)

where Fm = Fl+Fu
2 and the objective is a constant. Note that (2.24) is a convex optimization problem

and can be solved via convex optimization methods. If (2.24) has an optimal solution θ̄, it holds that

φFm(θ̄) ≤ 0; as a result, it also holds that F ∗ ≤ F (θ̄) ≤ Fm. Otherwise, if (2.24) does not have an

optimal solution, it holds that φFm(θ) > 0, ∀θ ∈ D; similar to the previous case, this implies that

F (θ) > Fm,∀θ ∈ D and subsequently Fm < F ∗.

The bi-section provides a way to find an approximate solution, similar to Alg. 1; in

particular, at each iteration, given a search interval [Fl, Fu], it solves the feasibility problem (2.24)

for the middle point Fm. If the feasibility problem has an optimal solution (Line 5), i.e., F ∗ ≤ F (θ̄),

the bi-section updates the search interval by setting the upper-bound (Line 6) Fu = F (θ̄). Otherwise,

it updates the lower bound as (Line 8) Fl = F (θ̄). Note that, again, the bi-section method obtains a

solution Fm that is within ε neighborhood of F ∗ in logarithmic number of rounds dlog2(Fu−Flε )e.

2.3 Submodular Maximization

Here we review a class of combinatorial optimization problems, known as the submodular

maximization. These problems are known to be NP-hard [90]; however, a variant of the Frank-Wolfe

algorithm, i.e., the continuous greedy algorithm [40] provides a 1− 1/e approximation guarantee. In

this thesis, we use the continuous greedy algorithm in Chapter 4 for solving cache networks problems.

We next define submodularity and related concepts, then we present the continuous greedy algorithm,
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and show its connection to FW. We first review some basic definitions, see the paper by Krause and

Golovin [91] for more details.

2.3.1 Set Functions and Submodularity.

Given a finite set X , a set function f : 2X → R is called non-decreasing if f(S) ≤ f(S′)

for all S ⊆ S′ ⊆ X , and non-increasing if −f is non-decreasing. Function f is called submodular if

it satisfies the following diminishing returns property: for all S ⊆ S′ ⊆ X , and all x ∈ X ,

f(S′ ∪ {x})− f(S′) ≤ f(S ∪ {x})− f(S), (2.25)

A function is called supermodular if −f is submodular (or, equivalently, (2.25) holds with the

inequality reversed).

Matroids. A matroid is a pairM = (V, I), where V = {1, . . . , N} , [N ] is the ground set of N

elements and I ⊆ 2V is the collection of independent sets, for which the followings hold.

1. For all B ∈ I and A ⊂ B it holds that A ∈ I.

2. For all A,B ∈ I and |A| < |B|, there exists x ∈ B −A, s.t., A+ {x} ∈ I.

Matroid Polytope. A polytope associated with the matroidM is the matroid polytope P (M) ⊂
R|V |+ , defined as follows

P (M) = convex({1S : S ∈ I}), (2.26)

where 1S ∈ R|V | is a vector with its i-th element is 1, if i ∈ S and 0, otherwise and convex denotes

the convex hull. The convex hull of a set is the smallest convex set that contains the set.

We introduce two examples of matroids

1. Uniform Matroids. A uniform matroid with k cardinality is defined as I = {S ∈ 2V ||S| ≤
k}.

2. Partition Matroids. Let B1, . . . ,Bm ⊂ V be disjoint sets, i.e., ∩i=1,...,mBj = ∅ and

∪1,...,mBj = V, then a partition matroid is the following I = {S ⊂ 2V |∀j = 1, . . . ,m, S ∩
Bj ≤ kj}, where kj ∈ N, j ∈ [d] , {1, . . . , d} are given budgets.
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2.3.2 Problem Statement

Consider the problem of maximizing a submodular function f subject to matroid constraints

M :

max
S∈I

f(S). (2.27)

The greedy [39] algorithm produces a solution within 1
2 -approximation from the optimal; however

for cases where I is a uniform matroid, the approximation ratio is 1− 1/e. The continuous greedy

algorithm [39] achieves a 1− 1/e approximation ratio for (2.27) and for a general matroidM. Note

that this is a superior result in comparison with the greedy algorithm. In the following we review the

continuous greedy algorithm, which maximizes the multilinear relaxation of a submodular function

in the continuous domain.

Change of Variables. Note that every set S ∈ 2V can be represented by a binary N -dimensional

vector xS ∈ {0, 1}N , where its i-th element is 1 if i ∈ S and 0 otherwise.

2.3.3 Continuous Greedy Algorithm

The continuous greedy algorithm maximizes a relaxation of the set function f in the

continuous domain; this relaxation is known as the multilinear relaxation [39], which we define here.

Multilinear Relaxation. The multilinear relaxation of a submodular function F is the function

G : [0, 1]N → R+, s.t.,

G(y) = Ex∼y[f(S)] =
∑

xS∈{0,1}N
f(S)

∏
i:xi=1

yi
∏
i:xi=0

(1− yi). (2.28)

Here, the expectation is taken over a distribution parametrized by the vector y = [yi]
N
i=1. More

precisely, each element i ∈ [N ] is one with probability yi, independently from other elements.

The continuous-greedy algorithm provides approximation guarantees for maximizing the

multilinear relaxation of a submodular function subject to a down-closed convex set D. A down-

closed convex set is a convex set that (1) ∀y ∈ D,y ≥ 0 and (2) ∀y2 ∈ D, y1 ≤ y2 implies that

y1 ∈ D. To be more precise we focus on the following problem

max
y∈D

G(y), (2.29)

where D , P (M) is the matroid polytope, which is a down-closed convex set [39].
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Algorithm 2 the Continuous Greedy algorithm
1: Input: G : D → R+, 0 < γ ≤ 1

2: y0 ← 0, t← 0, k ← 0

3: while t < 1 do

4: mk ← arg maxm∈D〈v,∇G(yk)〉
5: γk ← min(γ, 1− t)
6: yk+1 ← yk + γkmk, t← t+ γk, k ← k + 1

7: end while

8: return yk

The continuous-greedy algorithm initially starts with a zero solution y0 = [0]. Then it

proceeds in iterations, where in the k-th iteration it finds a feasible point mk ∈ P (M) which is a

solution for the following problem

max
m∈D

〈
m,∇G(yk)

〉
, (2.30)

where the objective in (2.29) is replaced with a linear function. As we discuss later (2.30) does not

need to be solved exactly [92]. After finding mk the continuous greedy updates the current solution

y as follows

yk+1 = yk + γkmk, (2.31)

where γk ∈ [0, 1] is a step size. We summarize the continuous greedy algorithm in Alg. 2.

2.3.4 Continuous Greedy Algorithm and Frank-Wolfe

The continuous greedy algorithm is similar to the Frank-Wolfe algorithm, introduced in

Sec. 2.2.2. In particular, by comparing (2.13) and (2.30) we see that they both optimize a linear

objective, i.e., the first order Taylor expansion of the objective centered at the current solution subject

to a convex set. The second step, which updates the current solution are slightly different between

the two algorithms. In particular, compare (2.14) and (2.31); we see that the Frwnk-Wolfe algorithm

updates the solutions as a convex combination of the current solution and the solution of the problem

with linear objective, while the continuous greedy algorithm increments the current solution with a

coefficient of the solution of the sub-problem (2.30). The reason for this is to leverage properties

of the multilinear relaxation and provide a 1− 1/e guarantee, for details on the proof refer to the

seminal work by Calinescu et al. [39].
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Table 2.1: Properties of DR-submodular functions

Properties DR-submodular f(.), ∀x,y ∈ X

0’th order f(x) + f(y) ≥ f(x ∨ y) + f(x ∧ y),

and f(.) is coordinate-wise concave.

1’st order Definition 2.3.1

2’nd order ∂2f(x)
∂xi∂xj

≤ 0, ∀i, j ∈ [n]

2.3.5 DR-submodular Functions

The notion of submodularity has been extended to the continuous domain [92], as DR-

submodular functions. Bian et al. [92] define a DR-submodular function as follows:

Definition 2.3.1. Suppose X is a subset of Rn. A function f : X → R is DR-submodular if for all

a ≤ b ∈ X , i ∈ [n], and k ∈ R+, such that (kei + a) and (kei + b) are still in X , the following

inequality holds:

f(kei + a)− f(a) ≥ f(kei + b)− f(b)

Intuitively, a DR-submodular function f is concave coordinate-wise along any non-negative

or non-positive direction. DR-submodular functions arise in a variety of different settings (see Bian

et al. [92]), and in some sense satisfy a weakened notion of concavity. They can also be defined in

alternative ways that parallel the zero-th, first, and second order conditions for concavity (see [31]).

For example, for X ⊆ Rn, a function f : X → R is DR-submodular iff for all x,y ∈ X ,

f(x) + f(y) ≥ f(x ∨ y) + f(x ∧ y),

where ∨ and ∧ are coordinate-wise maximum and minimum operations, respectively. A list of such

conditions of DR-submodular functions is summarized in Table 2.1. Each one of these properties

serves as a necessary and sufficient condition for a function to be DR-submodular [92]. The

continuous greedy algorithm provides approximation guarantees for maximizing DR-submodular

functions subject to down-closed convex sets, which are non-convex problems. This has been a

recent topic of research [93, 94].
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2.4 Parallel and Distributed Computing Frameworks

2.4.1 Map-Reduce Framework

Map-reduce [95, 96] is a distributed framework used to massively parallelize computa-

tionally intensive tasks. It enjoys wide deployment in commercial cloud services such as Amazon

Web Services, Microsoft Azure, and Google Cloud, and is extensively used to parallelize a broad

array of data-intensive algorithms [97, 98, 99, 100, 101]. Expressing algorithms in map-reduce also

allows fast deployment at a massive scale: any algorithm expressed in map-reduce operations can be

quickly implemented and distributed on a commercial cluster via existing programming frameworks

[95, 96, 33].

Consider a data structure D ∈ XN comprising N elements di ∈ X , i ∈ [N ], for some

domain X . A map operation over D applies a function to every element of the data structure. That

is, given f : X → X ′, the operation D′ = D.map(f) creates a data structure D′ in which every

element di, i ∈ [N ], is replaced with f(di). A reduce operation performs an aggregation over the

data structure, e.g., computing the sum of the data structure’s elements. Formally, let ⊕ be a binary

operator ⊕ : X × X → X that is commutative and associative, i.e.,

x⊕ y = y ⊕ x, and ((x⊕ y)⊕ z) = (x⊕ (y ⊕ z)).

Then, D.reduce(⊕) iteratively applies the binary operator ⊕ on D, returning⊕
i∈[N ]

di = d1 ⊕ . . .⊕ dN .

Examples of commutative, associative operators ⊕ include addition (+), the min and max operators,

binary AND, OR, and XOR, etc.

Both map and reduce operations are “embarrassingly parallel”. Presuming that the data

structure D is distributed over P processors, a map can be executed without any communication

among processors, other than the one required to broadcast the code that executes f . Such broadcasts

require only logP rounds and the transmission of P − 1 messages, when the P processors are

connected in a hypercube network; the same is true for reduce operations [102]. There exist several

computational frameworks, including Hadoop [96] and Spark [33], that readily implement and

parallelize map-reduce operations. Hence, expressing an algorithm like FW in terms of map and

reduce operations allows us to (a) parallelize the algorithm in a straightforward manner, and (b)

leverage these existing frameworks to quickly implement and deploy FW at scale.
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We opted to implement our distributed algorithm in the map-reduce framework. The

first reason is that its implementations such as Hadoop [96] or Spark [33] are readily available

on commercially used clusters. The second reason is that map-reduce implementations allow

programming in high-level languages, e.g., Python, which are easy to program with. Code in these

high-level languages can be written in a compact and concise fashion. In particular, we implement our

distributed FW algorithm over Spark [33], which is an open-source implementation of map-reduce

well-suited for parallelizing iterative machine learning algorithms: this is because Spark caches the

results on RAM, so that they can be used in the next iteration.

2.4.2 Message Passing Interface (MPI)

Message Passing Interface (MPI) is a standard for message passing libraries aimed at

running programs on HPC platforms, e.g., clusters of computers. The standard defines syntax and

semantics of a set of library routines for different programming languages such as C, C++, or

python. MPI is the dominant framework used in HPC applications [103]. MPI provides topology,

communication, and synchronization between a set of processes: each process is usually mapped

to a processor. MPI uses objects called communicators to determine which subset of processes

may communicate with each other. MPI provides both point-to-point and collective communication

routines.

Point-to-point routines are used for communication between two specific processes. For

example, MPI Send allows a specified process to send a message to another specified process.

Correspondingly, MPI Recieve lets a specified process to receive a message from another specified

process. Collective routines involve communication between all processes in a communicator.

Examples of collective routines are MPI Bcast, MPI Scatter, MPI Reduce, or MPI Allreduce.

MPI Bcast sends data from a specified process to all other processes. MPI Scatter distributes

data from a stipulated process between all of the processes. MPI Reduce, similar to reduce in the

map-reduce framework, aggregates over data held by different processes. MPI Allreduce performs

a reduction over the data and then broadcasts the result to every processor; it is a MPI Reduce

followed by MPI Bcast.

Map-reduce has several advantages over MPI. First, map-reduce is readily available on

commercial clusters, e.g., Amazon Web Services, Microsoft Azure, and Google Cloud. Second,

programming in the map-reduce framework is much easier: implementation in MPI is done on lower-

level languages, moreover, it requires explicit specifications of communication types as well as of the
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processors that need to communicate. On the other hand, MPI allows for both point-to-point routines

for communication between two specific processors and more sophisticated collective operations

such as MPI Allreduce.

PyTorch Distributed Backends. Recently there has been a prevalent surge of interest in PyTorch1,

which provides libraries for implementing, training, and evaluating deep learning models. Moreover,

PyTorch, provides distributed computation via 3 backends, i.e., MPI, Gloo2, and Nccl3. Gloo and

NCCL provide communications similar to MPI, but they are both made compatible with PyTorch

objects, NCCL works on GPUs.

2.4.3 Open Multi-Processing (OpenMP)

OpenMP is an API for shared-memory multiprocessing programming in C, C++, and

Fortran. It offers several pros. It is efficient and provides high scalability comparable to MPI, when

running on shared-memory platforms. Moreover, it is easier to work with in comparison to MPI, as

the user does not need to deal with message passing. Moreover, original serial code generally do not

need to be modified to run in parallel with OpenMP. However, it suffers from some drawbacks. First,

the scalability is limited by the memory of the platform, while distributed frameworks, such as, MPI

and Map-Reduce are more scalable. Also, it is hard to debug with regards to synchronization issues.

1https://pytorch.org
2https://github.com/facebookincubator/gloo
3https://github.com/nvidia/nccl
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Frank-Wolfe via Map-Reduce

Map-reduce [95, 96] is a distributed framework used to massively parallelize computa-

tionally intensive tasks. It enjoys wide deployment in commercial cloud services such as Amazon

Web Services, Microsoft Azure, and Google Cloud, and is extensively used to parallelize a broad

array of data-intensive algorithms [97, 98, 99, 100, 101]. Expressing algorithms in map-reduce also

allows fast deployment at a massive scale: any algorithm expressed in map-reduce operations can be

quickly implemented and distributed on a commercial cluster via existing programming frameworks

[95, 96, 33].

In this chapter, we focus on solving, via map-reduce, optimization problems of the form:

minθ∈D0 F (θ), (3.1)

where F : RN → R is a convex, differentiable function, and

D0 ≡
{
θ ∈ RN+ :

∑N
i=1 θi = 1

}
(3.2)

is the N -dimensional simplex. Several important problems, including experimental design, training

SVMs, Adaboost, and projection to a convex hull indeed take this form [18, 16, 72]. We are

particularly interested in cases where (a) N � 1, i.e., the problem is high-dimensional, and, (b) F

cannot be written as the sum of differentiable convex functions. We note that this is precisely the

regime in which (3.1) is hard to parallelize via, e.g., stochastic gradient descent.

It is well known that (3.1) admits an efficient implementation through the Frank-Wolfe

(FW) algorithm, also known as the conditional gradient algorithm [29]. Frank-Wolfe (FW) [29] has

attracted interest recently due to its numerous computational advantages [79, 80, 81, 82, 18, 30].

It maintains feasibility throughout execution while being projection-free, and minimizes a linear
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objective in each step; the latter yields sparse solutions for several interesting constraint sets, which

often accelerates computation [18, 16, 30]. Indeed, as we discuss in Sec. 3.1.4, FW assumes a very

simple, elegant form under simplex constraints. Our main contribution is to identify and formalize

a set of conditions under which solving Problem (3.1) through FW admits a massively parallel

implementation via map-reduce.

Relevant to our work, Bellet et al. [16] propose a distributed version of FW for objectives

of the form F (θ) = g(Aθ), for some A ∈ Rd×N , where d� N . Several examples fall in this class,

including two we study here (convex approximation and Adaboost); intuitively, Aθ serves as the

common information in our framework (c.f. Sec. 3.2). The authors characterize the message and

parallel complexity when A is partitioned across multiple processors under broadcast operations.

Moreover, Tran et al in [104] elaborated on their algorithm, and proposed an asynchronous version of

the distributed Frank-Wolfe algorithm in [16]. It is based on their Stale Synchronous Parallel (SSP)

model [104]. They showed that the SSP based algorithm runs faster than the one based on a Bulk

Synchronous Parallel (BSP) model, which is commonly used in distributed processing frameworks.

We (a) consider a broader class of problems, that do not abide by the structure presumed by Bellet

et al or Tran et al.. (e.g., the two experimental design problems presented in Sec. 3.3), and (b)

establish properties under which FW can be explicitly parallelized through map-reduce rather than

the message passing environment proposed by Bellet et al. This allows us to leverage commercial

map-reduce frameworks to readily implement and deploy parallel FW on a cluster.

In particular, we make the following contributions:

• We identify two properties of the objective F under which FW can be parallelized through

map-reduce operations.

• We show that several important optimization problems, including experimental design, Ad-

aboost, and projection to a convex hull satisfy the aforementioned properties.

• We implement our distributed FW algorithm on Spark [33], an engine for large-scale distributed

data processing. Our implementation is generic: a developer using our code needs to only

implement a few problem-specific computational primitives; our code handles execution over

a cluster.

• We extensively evaluate our Spark implementation over large synthetic and real-life datasets,

illustrating the speedup and scalability properties of our algorithm. For example, using 350
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compute cores, we can solve problems of 20 million variables in 79 minutes, an operation that

would take 48 hours when executed serially.

• We introduce two stochastic variants of distributed FW, in which we only compute a subsample

of the elements of the gradient. We implement these algorithms on Spark and compare their

performance with distributed FW.

The remainder of this chapter is organized as follows. We introduce FW and its variants in Sec. 3.1.

In Sec. 3.2, we state the properties under which FW admits a parallel implementation via map-reduce,

and describe the resulting algorithm. Examples of problems that satisfy these properties are given in

Sec. 3.3. We extend possible applications of our algorithm on constraint sets beyond the simplex

in Sec. 3.4. Finally, in Sec. 3.5 and 3.6 we describe our implementation and the results of our

experiments over a Spark cluster. Finally, we conclude in Sec. 3.7

3.1 Technical Background

3.1.1 Frank-Wolfe Algorithm

The FW algorithm [29], summarized in Alg. 3, solves problems of the form:

Minimize F (θ) (3.3a)

subj. to: θ ∈ D, (3.3b)

where F : RN → R is a convex function and D is a convex compact subset of RN . The algorithm

selects an initial feasible point θ0 ∈ D and proceeds as follows:

sk = arg min
s∈D

s> · ∇F (θk), (3.4a)

θk+1 = (1− γk)θk + γksk, (3.4b)

for k ∈ N, where γk ∈ [0, 1] is the step size. At each iteration k ∈ N, FW finds a feasible point

sk minimizing the inner product with the current gradient, and interpolates between this point and

the present solution. Note that θk+1 ∈ D, as a convex combination of θk, sk ∈ D; therefore, the

algorithm maintains feasibility throughout its execution. Steps (3.4a),(3.4b) are repeated until a

convergence criterion is met; we describe how to set this criterion and the step size γk below.
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Algorithm 3 FRANK-WOLFE

1: Pick θ0 ∈ D
2: k := 0

3: repeat

4: sk := arg mins∈D s
> · ∇F (θk)

5: gap := (θk − sk)>∇F (θk)

6: θk+1 := (1− γk)θk + γksk

7: k := k + 1

8: until gap < ε

Convergence criterion. Convergence is typically determined in terms of the duality gap [30]. The

duality gap at feasible point θk ∈ D in iteration k ∈ N is:

g(θk) ≡ max
s∈D

(θk − s)>∇F (θk)
(3.4a)
= (θk − sk)T∇F (θk), (3.5)

The convexity ofF implies thatF (θk)−F (θ∗) ≤ g(θk) for any optimal solution θ∗ ∈ arg minθ∈D F (θ)

[30]. In other words, g(θ) is an upper bound on the objective value error at step k. The algorithm,

therefore, terminates once the duality gap is smaller than some ε > 0.

Step Size. The step size can be diminishing, e.g., γk = 2
k+2 , or set through line minimization, i.e.:

γk = arg min
γ∈[0,1]

F
(
(1− γ)θk + γsk

)
. (3.6)

Convergence to an optimal solution is guaranteed in both cases for problems in which the objective

has a bounded curvature [29, 30]. In this case, both of the above step sizes imply that the k-th iteration

of the Frank-Wolfe algorithm satisfies F (θk)− F (θ∗) ≤ O( 1
k ) [30]. For arbitrary convex objectives

with unbounded curvature, FW still converges if the step size is set by the line minimization rule

[70].

FW has several advantages. First, it reduces the optimization of a general convex function

subject to a convex constraint set to the optimization of a linear objective function (see (3.4a))

subject to the convex constraint set. For several constraint sets of practical interest, e.g., linear

constraint sets, these sub-problems are solved efficiently [30, 105]. In particular, when the constraint

set is a linear constraint set, FW reduces the original problem to solving a sequences of linear

programming problems; these problems can be solved by efficient linear programming techniques.

Another example is the simplex constraint set; we show in Section 3.3 that many problems of interest
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have this constraint set. As we discuss in Section 3.1.4, sub-problem (3.4a) admits a very simple

solution under this constraint set.

Another advantage of FW over other methods such as ADMM or barrier methods is that it

maintains feasibility by finding convex combinations of feasible points (see (3.4b)). It is important

for applications that require feasibility of the solutions through the iterations. Moreover, in contrast

to other optimization methods that generate feasible solutions, e.g., projected gradient descent, FW is

projection-free. Projected gradient descent, projects the solution on the constraint set at each iteration

to obtain a feasible solution. The projection on a constraint set requires minimizing a quadratic

function, which measures the distance between the given point and a point on the set, subject to

the original constraint set. As discussed in [80] for many constraint sets of interest solving (3.4a)

with a linear objective is significantly cheaper than solving the projection problem with a quadratic

function. In particular, projection of a matrix X ∈ RM×N on the set of bounded trace norm matrices

requires finding the SVD decomposition of X , while solving (3.4a) is done by only finding the

top-eigenvectors of X . The former has a time complexity of O(NM2), while for the latter fast

algorithms, linear in the number of non-zero elements of X , exist [80].

Moreover, FW for some constraint sets, e.g., the simplex, generates sparse solutions with

provable approximations [18]. Sparse solutions are often desired in practice; for example in [106]

they are used to speed up the solutions of SVM problem. The solution to (3.4a) for the simplex

is given by (3.9). This solution is extremely sparse, i.e., it has only one non-zero element. This

along with the simple adaptation step (3.4b) ensures that the solution at k-iteration θk has at most k

non-zero elements. Moreover, considering the convergence guarantees of FW, this sparse solution is

within the 1
k -neighborhood of the optimal solution.

3.1.2 FW Variants

There are several variants of FW in the literature. In general, these variants are divided

to two groups; first group improves the convergence rate of FW [107, 108, 109, 110, 111, 112].

The other group reduces computation time of each iteration of FW by randomizing the algorithm,

while obtaining convergence guarantees [80, 113, 114, 115]. As these algorithms are not readily

parallelizable or applicable to the problems we consider here, we focus on parallelizing the classic

FW in this thesis. We leave parallelization of these variants for future work. Nonetheless, for

completeness, we explain some of these variants in this Section.

Fast-convergent variants. Frank and Wolfe [29] showed a convergence rate of O(1
ε ) for smooth
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objectives. When the optimal solution lies at the boundary of the constraint set, FW converges

slowly, i.e., the O(1
ε ) convergence rate is tight [116, 117, 29, 30]. This is because the iterations of

the classic FW zig-zag between the vertices defining the face that contains the optimal solution. To

avoid this zig-zagging phenomenon, Wolfe in [107] proposed a variant using ‘away-points’; the basic

idea is to move away from a ‘bad’ direction. Guélat and Marcotte [118] analyzed this further, and

showed a linear convergence rate on polytope constraint sets. Several recently proposed FW variants

improve the previous results for Away-steps Frank-Wolfe and attain linear convergence under weaker

conditions [108, 109, 110, 111, 112].

Here, we introduce two of these variants, i.e., Away-step FW and Pairwise FW: Lacoste-

Jullien and Jaggi [110] showed that for a strongly-convex objective and a polytope constraint set

these variants enjoy a linear convergence rate. In particular, they solve (3.3) for a strongly-convex F

and the constraint set

D = conv(A),

where A is a finite set of M points a1, . . . , aM ∈ RN , called atoms. Note that (3.4a) for this

constraint set takes the form:

akFW = arg min
a∈A

a> · ∇F (θk). (3.7)

They refer to akFW as FW atom. In both of the variants, the solution θk at each iteration k is a convex

combination of the atoms:

θk =
M∑
i=1

γki ai.

At each iteration, they denote the active atoms by the set Ak = {ai ∈ A : γki > 0}.
Away-step FW. The basic idea for Away-step FW is to mitigate the zig-zagging phenomenon by

moving away from a bad direction, i.e., the direction d that maximizes the descent potential given by

P ≡ d> · ∇F (θ). At each iteration k, Away-step FW, just like FW, finds the FW atom akFW given

by (3.7). Then, it finds an away atom given by:

akA = arg max
a∈Ak

a> · ∇F (θk). (3.8)

Note that, here, the search region is over the selected atoms Ak ⊆ A, which is usually smaller

than A. Therefore, this optimization problem is easier than (3.7). Then, Away-step FW evaluates

the descent potentials corresponding to the FW and away atoms, i.e., P kFW and P kAway, respectively
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defined as:

P kFW = (akFW − θk)> · ∇F (θk),

P kAway = (θk − akA)> · ∇F (θk).

Then, depending on which potential is minimum, Away-step FW adapts the current solution: in case

P kFW < P kAway, θ
k+1 is given by:

θk+1 = θk + α(akFW − θk).

Note that this is exactly the adaptation step in the classic FW (3.4b). Otherwise, if P kFW > P kAway, the

adaption has the form:

θk+1 = θk + α(θk − akA).

Note that here for α ≥ 0, θk+1 is not a convex combination of the points θk, akA. Hence, the step-size

α is selected to ensure θk+1 ∈ D.
Pairwise FW. The basic idea in Pairwise FW is to move weights only between two atoms. Formally,

at each iteration k, Pairwise FW, similar to Away-step FW, finds the FW and away atoms, i.e., akFW
and akA, respectively. Then, it adapts the solution θk by swapping weights between these two atoms,

while keeping all other weights fixed:

θk+1 = θk + α(akFW − akA).

Note that this is different from classic FW, which shrinks all of the weights, except the FW atom

weight, by a factor of 1 − α. Again, note that θk+1 for α ≥ 0 is not a convex combination of the

points θk, akFW and akA. Therefore, the step-size is set in a way that guarantees feasibility of θk+1.

The convergence bound for Pairwise FW, proved in [110], is looser than Away-step FW. However, it

works well in practice [110].

These two FW variants, as well as others in the literature [119, 120, 121, 110] converge

faster than FW. However, as setting the step-size is more challenging and keeping track of the active

atoms further complicates the algorithm, in this thesis we focus on parallelizing the classic FW.

Stochastic variants. Stochastic variants of FW have recently been proposed [80, 113, 114, 115],

which stochastically approximate the gradient. In general, these variants solve convex optimization

problems (3.3), where the objective F has a separable form:

F (θ) = 1/M

M∑
i=1

Fi(θ).
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Moreover, they consider constraint sets D, for which solving the linear sub-problem (3.4a) is easy,

while projection over them is expensive. Hazan and Kale [80] list such constraint sets.

Hazan and Kale [80] focused on an online learning setting; however, their result is inferior

to a trivial stochastic FW algorithm, called SFW in [114], which similar to SGD estimates the

gradient∇F by∇Fi for some i ∈ {1, . . . ,M}, selected u.a.r. Lan and Zhou [113] introduced the

Conditional Gradient Sliding method, which allows the algorithm to skip the computation of the

gradient from time to time. They also proposed a stochastic version of this algorithm. Hazan and Lou

[114] improved these results by using a variance-reduced stochastic gradient [122, 123] to estimate

the gradient. Variance-reduced stochastic gradient provides an unbiased estimate of the gradient with

a bounded variance, at the expense of computing the exact gradient for a point. Hazan and Lou [114]

provide a thorough survey, and show that their algorithms outperform [80, 113] and SFW, in terms

of the number of exact and stochastic gradient computations and the number of subproblems (3.4a)

needed to obtain a solution within ε-neighborhood of the optimal. In particular, they reduce the

number of stochastic gradient evaluations from O( 1
ε2

) to O( 1
ε1.5

) for smooth objective functions and

from O(1
ε ) to O(ln 1

ε ) for smooth and strongly-convex objective functions. Reddi et al. [115] use the

variance-reduced stochastic gradient idea to propose two stochastic variants of FW for non-convex

objective functions. They show that both algorithms converge to a stationary point, with convergence

rates faster than classic FW.

A different stochastic variants of FW solves problems with block-separable constraints

[124]. Lacoste-Julien et al. in [124], proposed a random single-block FW algorithm, in which only a

single block of variables, selected u.a.r., is updated. At the expense of computing the duality gap, the

convergence result was improved in [125].

We implement two stochastic FW variants based on gradient subsampling: the basic idea is

to compute the partial derivatives in only a random subset of the directions.We compare the relative

performance of subsampling to increasing parallelism in Section 3.6.

3.1.3 Distributed implementations

More recently, and more relevant to our work, Bellet et al. [16] propose a distributed version

of FW for objectives of the form F (θ) = g(Aθ), for some A ∈ Rd×N , where d � N . Several

examples fall in this class, including two we study here (convex approximation and Adaboost);

intuitively, Aθ serves as the common information in our framework (c.f. Sec. 3.2). The authors

characterize the message and parallel complexity when A is partitioned across multiple processors
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under broadcast operations. Moreover, Tran et al in [104] elaborated on their algorithm, and proposed

an asynchronous version of the distributed Frank-Wolfe algorithm in [16]. It is based on their Stale

Synchronous Parallel (SSP) model [104]. They showed that the SSP based algorithm runs faster than

the one based on a Bulk Synchronous Parallel (BSP) model, which is commonly used in distributed

processing frameworks.

We differ from these implementations in the following two ways:

• We consider a broader class of problems, that do not abide by the structure presumed by Bellet

et al. or Tran et al. (e.g., the two experimental design problems presented in Sec. 3.3). Our

algorithm can be viewed as a generalization of their algorithm. In particular, our distributed

algorithm can be applied to the problems they consider, i.e., F (θ) = g(Aθ), by defining the

common information as Aθ (see Prop. 1 and 2 in Section 3.2).

• We establish properties under which FW can be explicitly parallelized through map-reduce

rather than the message passing environment proposed by Bellet et al. This allows us to

leverage commercial map-reduce frameworks to readily implement and deploy parallel FW on

a cluster.

3.1.4 Frank-Wolfe Over the Simplex

We focus on FW for the special case where the feasible set D is the simplex D0, given by

(3.2). As described in Section 3.3, this set of constraints arises in many problems, including training

SVMs, convex approximation, Adaboost, and experimental design (see also [18]). Under this set of

constraints, the linear optimization problem in (3.4a) has a simple solution: it reduces to finding the

minimum element of the gradient ∇F (θk). Formally, for [N ] ≡ {1, 2, . . . , N}, and {ei}i∈[N ] the

standard basis of RN , (3.4a) reduces to:

sk = ei∗ , where i∗ ∈ arg min
i∈[N ]

∂F (θk)

∂θi
. (3.9)

Note that sk is a vector in the standard basis of RN , for all k ∈ N: as such, it is extremely sparse,

having only one non-zero element. The sparsity of sk plays a role in producing our efficient,

distributed implementation, as discussed below.

40



CHAPTER 3. FRANK-WOLFE VIA MAP-REDUCE

3.2 Frank-Wolfe via Map-Reduce

3.2.1 Gradient Computation through Common Information

In this section, we identify two properties of function F under which FW over the simplex

D0 admits a distributed implementation through map-reduce. Intuitively, our approach exploits an

additional structure exhibited by several important practical problems: the objective function F often

depends on the variables θ as well as a dataset, given as input to the problem. We represent this

dataset through a matrix X = [xi]i∈[N ] ∈ RN×d whose rows are vectors xi ∈ Rd, i ∈ [N ]. The

dataset can be large, as N � 1; as such, X may be horizontally (i.e., row-wise) partitioned over

multiple processors. Note here that the dataset size (N ) equals the number of variables in F .

We assume that the dependence of F to the dataset X is governed by two properties. The

first property asserts that the partial derivative ∂F
∂θi

for any i ∈ [N ] depends on (a) the variable θi, (b)

a datapoint xi in the dataset, as well as (c) some common information h. This common information,

not depending on i, fully abstracts any additional effect that θ and X may have on partial derivative
∂F
∂θi

. Our second property asserts that this common information is easy to update: as variables θk

are adapted according to the FW algorithm (3.4), the corresponding common information h can

be re-computed efficiently, through a computation that does not depend on N . More formally, we

assume that the following two properties hold:

Property 1. There exists a matrix X = [xi]i∈[N ] ∈ RN×d, whose rows are vectors xi ∈ Rd, i ∈ [N ],

such that for all i ∈ [N ]:

∂F (θ)

∂θi
= G(h(X; θ), xi, θi), (3.10)

for some h : RN×d × RN → Rm, and G : Rm × Rd × R→ R, where m, d� N .

We refer to h as the common information and to G as the gradient function. When

X ∈ Rd×N is partitioned over multiple processors, Prop. 1 implies that a processor having access

to θi, xi, and the common information h(X; θ) can compute the partial derivative ∂F
∂θi

. No further

information on other variables or datapoints is required other than h. Moreover, computing G is

efficient, as its inputs are variables of size m, d� N .

Recall from (3.4) and (3.9) that, when the constraint set is the simplex, adaptations to θk

take the form:

θk+1 = (1− γk)θk + γei∗ , where i∗ ∈ arg min
i∈[N ]

∂F (θk)

∂θi
.
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Our second property asserts that when θk is adapted thusly, the common information h can be easily

updated, rather than re-computed from scratch from X and θk+1:

Property 2. Let D = D0. Given h(X; θk), the common information at iteration k of the FW

algorithm, the common information h(X; θk+1) at iteration k + 1 is:

h(X; θk+1) = H(h(X; θk), xi∗ , θ
k
i∗ , γ

k), (3.11)

for some H : Rm × Rd × R× R→ Rm, where i∗ ∈ arg mini∈[N ]
∂F (θk)
∂θi

.

Prop. 2, therefore, implies that a machine having access to xi∗ , θki∗ , γ
k, and the common

information h(X; θk) in the last iteration can compute the new common information h(X; θk+1).

Again, no additional knowledge of X or θk is required. Moreover, similar to the computation of G in

Prop. 1, this computation is efficient, as it again only depends on variables of size m, d� N . As we

will see, in establishing that Prop. 2 holds for different problems, we leverage the sparsity of sk at

iteration k ∈ N, as induced by (3.9): the fact that θk is interpolated with vector ei∗ , containing only

a single non-zero coordinate, is precisely the reason why the common information can be updated

efficiently.

Example: For the sake of concreteness, we give an example of an optimization problem over the

simplex that satisfies Properties 1 and 2, namely, CONVEXAPPROXIMATION; additional examples

are presented in Section 3.3. Given a point p ∈ Rd and N vectors xi ∈ Rd, i ∈ [N ], the goal of

CONVEXAPPROXIMATION is to find the projection of p on the convex hull of set {xi | i ∈ [N ]}.
This can be formulated as:

CONVEXAPPROXIMATION

Minimize F (θ) = ‖XT θ − p‖22 (3.12a)

subj. to: θ ∈ D0, (3.12b)

where X = [xi]i∈[N ] ∈ RN×d. CONVEXAPPROXIMATION satisfies Prop. 1 as

∂F (θ)

∂θi
= 2xTi (XT θ − p) = G(h(X; θ), xi) for all i ∈ [N ],

where common information h : RN×d × RN → Rd is

h(X; θ) = XT θ − p, (3.13)
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Algorithm 4 SERIAL FW UNDER PROPERTIES 1 AND 2
1: Pick θ0 ∈ D
2: h := h(X; θ0)

3: k := 0

4: repeat

5: for each i ∈ [N ] do

6: zi := G(h, xi, θi)

7: end for

8: Find i∗ := arg mini∈[N ] zi

9: gap := (θk − ei∗ )>z

10: θk+1 := (1− γk)θk + γkei∗

11: h := H(h, xi∗ , θ
k
i∗ , γ

k).

12: k := k + 1

13: until gap < ε

and gradient function G : Rd × Rd → R is

G(h, x) = 2xTh.

Prop. 1 thus holds when d � N . Prop. 2 also holds because, under (3.4) and (3.9), the common

information at step k + 1 is:

h(X; θk+1) = (1− γk)h(X; θk) + γk(xi∗ − p)

= H(h(X; θk), xi∗ , γ
k),

where H : Rd × Rd × R→ Rd is given by

H(h, x, γ)=(1− γ)h+γ(x− p).

Note that, in this problem, m = d� N . Moreover, given their arguments, functions G and H can

be computed in O(d) time (i.e., their complexity does not depend on N � 1).

3.2.2 A Serial Algorithm

Before describing our parallel version of FW, we first discuss how it can be implemented

serially when Properties 1 and 2 hold. The main steps are outlined in Alg. 4. Beyond picking an

initial feasible point, the algorithm computes the initial value of the common information h. At

each iteration of the for loop, the algorithm computes the gradient∇F using the present common

information, and updates both θk and the common information h to be used in the next step. It is easy

to see that all steps in the main loop of Alg. 4 that involve computations depending on N (namely,
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Lines 5–10) can be parallelized through map-reduce operations, when X and θ are distributed over

multiple processors. We describe this in detail in the next section; crucially, the adaptation of the

common information h (Line 11) does not depend on N , and can, therefore, be performed efficiently

in one processor.

We note here that exploiting Properties 1 and 2 has efficiency advantages even in serial

execution. In general, the complexity of computing the gradient ∇F as a function of θ ∈ RN may

be quadratic in N , or higher, as each partial derivative ∂F
∂θi

, i ∈ [N ], is a function of N variables.

Instead, Properties 1 and 2 imply that the complexity of computing the gradient∇F at each iteration

of (3.4) is O(N): this is the complexity when the common information is adapted through H and

used to compute new partial derivatives through the gradient function G. For example, in the case

of CONVEXAPPROXIMATION, the complexity is O(Nd). As we show in Section 3.6, this leads to

a significant speedup, allowing Alg. 4 to outperform interior-point methods even when executed

serially.

3.2.3 Parallelization Through Map-Reduce

We now outline how to parallelize Alg. 4 through map-reduce operations. The algorithm

is summarized in Alg. 5, where we use the notation x 7→ f(x) and x, y 7→ g(x, y), to indicate a

unitary function f and a binary function g, respectively. The main data structure D contains tuples of

the form (i, xi, θ
k
i ), for i ∈ [N ], partitioned and distributed over P processors. A master processor

executes the map-reduce code in Alg. 5, keeping track of the common information h and the duality

gap at each step. A reduce returns the computed value to the master, while a map constructs a new

data structure distributed over the P processors.

Each step in the main loop of Alg. 4 has a corresponding map-reduce implementation in

Alg. 5. In the main loop, a simple map using function G appends zi = ∂F (`k)
∂θi

to every tuple in D,

yielding D′ (Line 7 in Alg. 5). A reduce on D′ (Line 8) computes a tuple (i∗, xi∗ , θi∗ , zi∗), for

i∗ ∈ arg mini∈[N ] zi. Similarly, a map and a reduce on D′ (a summation) yields the duality gap

(Line 9), while a map adapts the present solution θ in data structure D (Line 10). Finally, the common

information h is adapted centrally at the master node (Line 11), as in Alg. 4.

Message and Parallel Complexity. The reduce in Line 8 requires logP parallel rounds, involving

P − 1 messages of size O(d) [102]. Computing the gradient in parallel through a map in Line 7

requires knowledge of the common information at each processor. Hence, in the beginning of each

iteration, h is broadcast to the P processors over which D is distributed: this again requires in logP

44



CHAPTER 3. FRANK-WOLFE VIA MAP-REDUCE

Algorithm 5 FW VIA MAP-REDUCE

1: Pick θ0 ∈ D
2: Compute h := h(X; θ0)

3: Let D := {(i, xi, θ0i )}i∈[N ]

4: Distribute D over P processors

5: k := 0

6: repeat

7: D′ = D.map
(

(i, xi, θi) 7→ (i, xi, θi, G(h, xi, θi)
)

8: (i∗,xi∗ ,θi∗ ,zi∗ ) := D′.reduce

(i,xi,θi,zi),(i
′,xi′ ,θi′ ,zi′ ) 7→

(i,xi,θi,zi) if zi<zi′

(i′,xi′ ,θi′ ,zi′ ) if zi≥zi′


9: gap := D′.map

(i,xi,θi,zi) 7→

θi · zi if i 6= i∗

(θi − 1) · zi if i = i∗

 .reduce(+)

10: D := D.map

(i, xi, θi) 7→

(i,xi,(1− γk)θi) if i 6= i∗

(i,xi,(1− γk)θi + γk) if i = i∗


11: h := H(h, xi∗ , θi∗ , γ

k).

12: k := k + 1

13: until gap < ε

rounds and P − 1 messages. Note that the corresponding message has size O(m), that does not

depend on N . Similarly, the reductions in Lines 9 and 10 require broadcasting i∗, which has size

O(1). In practice, such variables are typically shipped to the processors by the master along with the

code of the function or operator to be executed by the corresponding map or reduce. The operations

in Lines 7–10 thus require logP parallel rounds and the transmission of O(P ) messages of size

O(m+ d).

3.2.4 Selecting the step size.

Our exposition so far assumes that the step size γk is computed at the master node

before updating D and h. This is certainly the case if, e.g., γk = 2
k+2 , but it does not readily

follow when the line minimization rule (3.6) is used. Nevertheless, all problems we consider here,

including CONVEXAPPROXIMATION, satisfy an additional property that ensures that (3.6) can also

be computed efficiently in a centralized fashion:

Property 3. There exists an F̂ : Rm → R such that F (θ) = F̂ (h(X; θ)) .

Prop. 3 implies that line minimization (3.6) at iteration k is:

γk = arg min
γ∈[0,1]

F̂
(
h(X; (1− γ)θk + γei∗)

)
. (3.14)
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The argument of F̂ is the updated common information hk+1 under step size γ. Hence, using Prop. 2,

Eq. (3.14) becomes:

γk = arg min
γ∈[0,1]

F̂
(
H(h, xi∗ , θ

k
i∗ , γ)

)
, (3.15)

where h is the present common information. As F is convex in θk, it is also convex in γ, so (3.15)

is also a convex optimization problem. Crucially, (3.15) depends on the full dataset X and the full

variable θ only through h. Therefore, the master processor (having access to xi∗ , θki∗ , γ, and h) can

find the step size via standard convex optimization techniques solving (3.15). In fact, for several

of the problems we consider here, line minimization has a closed form solution; for example, for

CONVEXAPPROXIMATION, the optimal step size is given by:

γk =
h>h− (xi∗ − p)>h

(xi∗ − p)>(xi∗ − p) + h>h− 2(xi∗ − p)>h
.

Though all problems we study, listed in Table 3.1, satisfy Prop. 1, 2, as well as 3, we stress again that

Prop. 3 is not strictly necessary to parallelize FW, as a parallel implementation can always resort to a

diminishing step size.

3.3 Examples

We provide several examples of problems that satisfy Prop. 1, 2, and 3; a summary is given

in Table 3.1.

Problems F (θ) m G compl. H compl.

Convex Approximation ‖Xθ − p‖22 d O(d) O(d)

Adaboost log
(∑d

j=1 exp(Ccjrj)
)

d O(d) O(d)

D-optimal Design − log detA(θ) d2 O(d2) O(d2)

A-optimal Design trace
(
A−1(θ)

)
2d2 O(d2) O(d2)

Table 3.1: Examples of problems satisfying Prop. 1–3.

Experimental Design: In experimental design, a learner wishes to regress a linear model β ∈ Rd

from input data (xi, yi) ∈ Rd × R, i ∈ [N ], where

yi = β>xi + εi,
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for εi, i ∈ [N ], i.i.d. noise variables. The learner has access to features xi, i ∈ [N ], and wishes to

determine which labels yi to collect (i.e., which experiments to conduct) to accurately estimate β.

This problem can be posed as [72]:

min
θ∈D0

f

( N∑
i=1

θixix
>
i

)−1
 , (3.16)

where θi indicates the portion of experiments conducted by the learner with feature xi. The quantity

A(X; θ) =
N∑
i=1

θixix
>
i

is the design matrix of the experiment. For brevity, we represent A(X; θ) as A(θ) below. Different

choices of f : Rd×d → R lead to different optimality criteria; we review two below.

D-Optimal Design: In D-Optimal design f is the log-determinant, and (3.16) becomes:

D-OPTIMALDESIGN

Minimize F (θ) = logdet

(
N∑
i=1

θixix
>
i

)−1

(3.17a)

subj. to: θ ∈ D0, (3.17b)

D-OPTIMALDESIGN satisfies Prop. 1 as:

∂F

∂θi
= −x>i A−1(θ)xi = G(h(X, θ), xi), for all i ∈ [N ],

where the common information h : RN×d × RN → Rd×d is

h(X; θ) = A−1(θ),

and the gradient function G : Rd×d × Rd → R, is given by

G(h, x) = −x>hx.

Hence, Prop. 1 holds when d2 � N . Using the Sherman-Morrison formula [22] we can show that

the common information at step k + 1 is:

A−1(θk+1) =
A−1(θk)

1− γ
−

γ

(1−γ)2
A−1(θk)xi∗x

>
i∗A
−1(θk)

1 + γ
1−γx

>
i∗A
−1(θk)xi∗

. (3.18)

As a result,

h(X; θk+1)= H(h(X, θk), xi∗ , γ),

47



CHAPTER 3. FRANK-WOLFE VIA MAP-REDUCE

where H : Rd×d × Rd × R→ Rd×d is:

H(h, x, γ)=
h

1− γ
−

γ

(1−γ)2
hxx>h

1 + γ
1−γx

>hx
. (3.19)

Therefore, Prop. 2 also holds. Note that, in this problem, m = d2 � N . Functions G and H include

only matrix-to-vector and vector-to-vector multiplications; hence, given their arguments, they can be

computed in O(d2) time.

A-Optimal Design: In A-Optimal design f is the trace:

A-OPTIMALDESIGN

Minimize F (θ) = Tr
(
A−1(θ)

)
(3.20a)

subj. to: θ ∈ D0. (3.20b)

The partial derivative of the F can be written as:

∂F

∂θi
= −x>i A−2(θ)xi = G(h(X; θ), xi), for all i ∈ [N ].

where the common information h : RN×d × RN → Rd×d × Rd×d is

h(X; θ) = (h1, h2),

where

h1 = A−1(θ),

h2 = A−2(θ).

The gradient function G : Rd×d × Rd → R is

G((h1, h2), x) = −x>h2x.

Hence, Property 1 holds when d2 � N . The common information at step k+1 is
(
A−1(θk+1), A−2(θk+1)

)
.

The first term can be computed as in (3.18). The second term is the square of the first term; expanding

it gives a formula in terms of A−1(θk) and A−2(θk). More formally, the common information at

iteration k + 1 can be written as:

h(X; θk+1) = (hk+1
1 , hk+1

2 ) = H(h(X; θk), xi∗ , γ),

where

H((h1, h2), x, γ) = (H1(h1, x, γ), H2(h1, h2, x, γ)),

48



CHAPTER 3. FRANK-WOLFE VIA MAP-REDUCE

and function H1 is given by (3.19), while H2 : Rd×d × Rd×d × Rd × R→ Rd×d is:

H2(h1, h2, x, γ) =
h2

(1− γ)2
−

γ

(1−γ)3
h2xx

>h1

1 + γ
1−γx

>h1xi
−

γ

(1−γ)3
h1xx

>h2

1 + γ
1−γx

>h1
+

γ2

(1−γ)4
x>h2xh1xx

>h2

(1 + γ
1−γx

>h1x)2
.

This illustrates why common information includes both A−1(θk) and A−2(θk): adapting the latter

requires knowledge of both quantities. Note also that m = 2d2 � N . Functions G and H again

only require matrix-to-vector and vector-to-vector multiplications and, hence, can be computed in

O(d2) time.

AdaBoost: Assume that N classifiers and ground-truth labels for d data points are given. The

classification result is represented by a binary matrix X ∈ {−1,+1}N×d, where xij is the label

generated by the i-th classifier for the j-th data point. The true classification labels are given by a

binary vector r ∈ {−1,+1}d. The goal of Adaboost is to find a linear combination of classifiers,

defined as:

c(X, θ) = X>θ,

such that the mismatch between the new classifiers and ground-truth labels is minimized. The

problem can be formulated as:

ADABOOST

Minimize F (θ) = log

 d∑
j=1

exp(−αcj(X, θ)rj)

 (3.21a)

subj. to: θ ∈ D0, (3.21b)

where rj and cj are, respectively, the j th element of the r and c vectors, and α ∈ R is a tunable

parameter. Again, (3.21) satisfies Prop. 1 as:

∂F (θ)

∂θi
= −x>i b = G(h(X; θ), xi), for all i ∈ [N ],

where b ∈ Rd is a vector, whose elements are

bj =
αrj exp (−αcjrj)∑d
i=1 exp(−αcjrj)

, for all j ∈ [d].

The common information, h : RN×d × RN → Rd is

h(X; θ) = [exp−αcjrj ]j∈[d] ,

and the gradient function G : Rd × Rd → R is

G(h, x) = x>ĥ,
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where

ĥ =

[
αrjhj∑d
i=1 hi

]
j∈[d]

.

Hence, Prop. 1 holds when d� N . Prop. 2 also holds because, under (3.4) and (3.9), the common

information at step k + 1 is

h(X; θk+1) = H(h(X, θk), xi∗ , γ),

where H : Rd × Rd × R→ Rd is given by

H(h, xi, γ) =
[
h

(1−γ)
j exp(−γαxjirj)

]
j∈[d]

.

In this problem, m = d� N and functions G and H can be computed in O(d) time.

Serial Solvers: All four problems in Table 3.1 are convex, and some admit specialized solvers.

A-OPTIMALDESIGN can be reduced to a semidefinite program, (see Sec. 7.5 of [72]), and solved as

an SDP. ADABOOST can be expressed as a geometric program (GP) [18], and CONVEXAPPROXIMA-

TION is a quadratic program (QP). D-OPTIMALDESIGN is a general convex optimization problem,

and can be solved by standard techniques such as, e.g., barrier methods. In Sec. 3.6 we compare FW

to the above specialized solvers, and we see that it outperforms them in all cases.

3.4 Extensions

Our proposed distributed Frank-Wolfe algorithm can be extended to a more general class

of problems, with constraints beyond the simplex.

`1−constraint: The `1 (or lasso) constraint ‖θ‖1 ≤ K appears in many optimization problems as

means of enforcing sparsity [126, 127]. For this constraint, adaptation (3.4b) becomes:

sk = σi∗ei∗ , where i∗ = arg max
i∈[N ]

∣∣∣∣ ∂f∂θi
∣∣∣∣ , (3.22)

and σi∗ = −K sign( ∂f
∂θi∗

). Eq. (3.22) can be computed in parallel through a reduce. The adaptation

step of γk is slightly different from the simplex case, as we interpolate between θk a scaled basis

vector σi∗ei∗ .

As an example, consider the LASSO problem [127]:

min
θ:‖θ‖1≤K

‖X>θ − p‖22. (3.23)
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Here, θ ∈ RN is the vector of weights, X ∈ RN×d is the matrix of N−dimensional features for d

datapoints, and p ∈ Rd is the observed outputs. Note that LASSO has exactly the same objective as

CONVEXAPPROXIMATION, so the common information from (3.13) is

h(X; θ) = XT θ − p.

The common information can be updated as

h(X; θk+1) = (1− γk)h(X; θk) + γk(σi∗xi∗ − p),

i.e., it is a function of h(X; θk) and the usual “local” information at i∗, now including also σi∗ .

Atomic Norms: More generally, consider the problem

min
θ:‖θ‖A≤K

f(θ),

where ‖x‖A denotes the atomic norm: given a set of atoms A = {ai ∈ RN} the atomic norm is

defined as

‖x‖A = inf{t ≥ 0 : x ∈ tconv(A)},

where conv(A) is the convex hull of the atoms. Atomic norms are used to encourage solutions

that have a low-dimensional structure, modelled as a linear combination of only few atoms [128,

129, 130, 105]. Tewari et al. [105] propose an FW-like algorithm for this class of problems. In this

algorithm, the step 4 of Alg. 3 is replaced by

sk = arg min
a∈A

a> · ∇F (θk). (3.24)

Then, the new solution is convex combination of the current solution and Ksk, similar to FW

Algorithm.

Our approach can be extended to problems of this form, where the set A comprises atoms

{±αiei}, where αi > 0 s are arbitrary scalars. Eq. (3.24) becomes sk = −αi∗ sign ( ∂f
∂θi∗

)ei∗ , where

i∗ = arg maxi∈[N ] |αi
∂f
∂θi
|. This can be implemented through a reduce, and adaptation is slightly

different from the simplex case as again sk is a scaled basis vector. An appropriate variant of Prop. 2,

should hold w.r.t. this adaptation step.

3.5 Implementation

We implemented Alg. 5 over Spark, an open-source cluster-computing framework [33].

Spark inherently supports map-reduce operations, and is well-suited for parallelizing iterative
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algorithms; this is because results of map-reduce operations can be cached in RAM, over multiple

machines, and accessed in the next iteration of the algorithm [33].

Our FW implementation is generic, relying on an abstract class. A developer only needs

to implement three methods in this class: (a) the gradient function G, (b) the common information

function h, and (c) the common information adaptation function H . Once these functions are

implemented, our code takes care of executing Alg. 5 in its entirety, and distributes its execution over

a Spark cluster. Our implementation, which is publicly available,1 can thus be used to solve arbitrary

problems that satisfy Prop. 1 and 2, and quickly deploy and parallelize their execution over a Spark

cluster. We have also instantiated this class for the problems summarized in Table 3.1 and used it in

our experiments.

3.6 Experiments

3.6.1 Experiment Setup

Cluster. Our cluster comprises 8 worker machines. Each worker has 2 Intel(R) Xeon(R) CPUs

(E5-2680 v4) with 2.4GHz clock speed and 14 cores, at 28 cores in total. Moreover, each core

supports hyper-threading; as a result, each physical core appears as two logical cores to the operating

system. Therefore, each worker has 2CPU× 14 cores
CPU × 2 threads

core = 56 threads (virtual cores), and the

cluster has 8 × 56 = 448 (virtual) cores in total. Thus, the maximum level of parallelism for our

cluster is 448. Also, each worker has 529 GB of RAM, 32KB L1 cache for instruction and data,

256KB for L2 cache, and 35.84MB for L3 cache. The cluster has 4TB of RAM in total. All code is

implemented in Python (v2.7.5) and Spark (v1.4.1); we also use python’s CVXOPT module (v1.1.8).

Algorithms. We solve Convex Approximation, Adaboost, D-Optimal Design, and A-Optimal Design

summarized in Table 3.1, as well as LASSO (c.f. Sec. 3.4). We implement both serial and parallel

solvers. First, we implement Serial FW (Alg. 4) in Python, setting γ using the line minimization

rule (3.6). In addition, we solve Convex Approximation, D-Optimal Design, A-Optimal Design,

and Adaboost using CVXOPT solvers, qp, cp, sdp, and gp, respectively. CVXOPT is a software

package for convex optimization based on the Python programming language.2 Beyond Serial FW

and using CVXOPT solvers, we also implement a third, naı̈ve serial algorithm in which the gradient

is computed from scratch at each iteration, not exploiting the common information introduced in

Prop. 1 and 2 (as Serial FW does). We call this implementation Oracle FW, as it computes the
1https://github.com/neu-spiral/FrankWolfe
2cvxopt.org
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gradient via a “function oracle”. We also implement our parallel algorithm (Alg. 5) using our Spark

generic implementation. We again set the step size using the line minimization rule (3.6). We refer

to this algorithm as Parallel FW. We control the level of parallelism, i.e., the number of cores P ,

by either setting the number of partitions of Spark resilient distributed datasets (RDDs) to P or by

controlling the total-executor-cores in Spark’s configuration and using a fixed high number

of partitions, e.g., 600. We use the former approach when dealing with smaller datasets and the

latter for larger datasets, as maintaining a large number of small partitions (executed serially) avoids

memory crashes in Spark. We also introduce two stochastic parallel variants that subsample the

gradient; we discuss these in Section 3.6.4. Finally, we also implement distributed ADMM for the

LASSO problem, as described in Section 8.3 of [13].

Synthetic Data. For D-optimal Design, A-optimal Design, Convex Approximation, and LASSO, the

synthetic data has the form of a matrix X ∈ RN×d. The point p in Convex Approximation is a vector

p ∈ Rd. The elements of X and p are sampled independently from a uniform distribution in [0, 1].

For Adaboost, input data is given by a binary matrix X ∈ {−1,+1}N×d and ground-truth labels

are represented by a binary vector r ∈ {−1,+1}d. The elements of r are sampled independently

from a Bernoulli distribution with parameter 0.5. Then each row of X is generated from r as follows:

each element xij is equal to rj with probability 0.7, and it is equal to −rj with probability 0.3. For

LASSO, the observed outputs are denoted by a vector p ∈ Rd, which is generated as follows: a

sparse vector θ∗ ∈ RN is sampled from a uniform distribution in [0,1], s.t., only 1 percent of its

elements are non-zero. Then the vector p is synthesized as p = X>θ∗ + ε, where ε ∈ Rd is the

noise vector, and its elements are sampled from a uniform distribution in [0, 0.01]. We create three

synthetic datasets with different values of N and d, summarized in Tables 3.2–3.4.

Real Data. We also experiment with 4 real datasets, summarized in Table 3.5. The first dataset is

Movielens [131]. This includes 20,000,263 ratings for 27,278 movies generated by 138,493 users.

We have kept the top 500 most-rated movies, resulting in 413,304 ratings, rated by 137,768 users.

We have represented the data as a matrix X ∈ RN×d with N = 137768 and d = 500, so that xij

indicates the rating of user i for movie j. Missing entries are set to zero. The second dataset is a

high-energy physics dataset, HEPMASS [132]. The dataset has 106 data points and 28 features.

We represent it as a matrix with N = 106 and d = 28. The third dataset is the MSD dataset [132],

which comprises 515345 songs with 90 features. We represent it as a matrix with N = 515345

and d = 90. The fourth dataset is from Yahoo Webscope.3 It represents a snapshot of the Yahoo!
3https://webscope.sandbox.yahoo.com
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Music community’s preferences for various songs. We used the test section of the dataset, which

contains 18,231,790 ratings of 136,735 songs by over 1.8M users. We find the 100-dimensional

latent vectors via matrix factorization technique [46], using the parameters µ = 0.001 and λ = 0.001.

We represent the latent vectors corresponding to users as a matrix X ∈ RN×d with N = 1, 823, 179

(number of users) and d = 100. We refer to this dataset as YAHOO dataset. When solving Convex

Approximation problem for the YAHOO dataset, the vector p ∈ R100 is generated as follows. An

arbitrary point from the dataset xi is chosen, then it is corrupted by noise: p = xi + ε, where the

elements of ε ∈ R100 are sampled independently form a uniform distribution in [0, 0.1]. Finally, the

point xi is removed from the dataset.

Metrics. We use two metrics. The first is the objective F of each problem, whose evolution we track

as different algorithms progress. Our second metric is tε, the minimum time for the algorithm to

obtain a solution θ within an ε-neighborhood of the optimal solution F (θ∗). As we do not know

F (θ∗), we use F (θ)− g(θ) ≤ F (θ∗) instead. More formally:

tε = min
{
t : F (θ(t))

F (θ(t))−g(θ(t)) ≤ 1 + ε
}
, (3.25)

where θ(t) denotes the obtained solution at time t. As F (θ)− g(θ) ≤ F (θ∗), tε overestimates the

time to convergence.

3.6.2 Serial Execution

Our first experiment compares the Serial FW algorithm with (a) the specialized interior

point solvers mentioned in Section 3.3 (i.e., cp, qp, sdp, and gp) and (b) with Oracle FW, for each

of the problems in Table 3.1. We use the small synthetic dataset (Dataset A) in Table 3.2.

In each execution, we keep track of the objective function F as a function of time elapsed.

Unlike FW, the interior-point methods do not generate feasible solutions at each iteration. Therefore,

we project the solutions at each iteration on the feasible set, and compute the objective F on the

projected solution. The time taken for the projection is not considered in time measurements; as

such, our plots underestimate the time taken by the interior-point algorithms.

Fig. 3.1 shows function values generated by the algorithms as a function of time. Serial FW

outperforms the interior-point methods, even when not accounting for projections. The reason is that,

in contrast to interior-point methods, the time complexity of computations at each iteration of Serial

FW is linearly dependent on N . As a result, when d� N , Serial FW is considerably faster, even
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Problem N d algs

Conv. Approx. 5000 20 qp

Adaboost 5000 100 gp

D-opt. Design 5000 20 cp

A-opt. Design 5000 20 sdp

Table 3.2: Dataset A

Problem N d ε

Conv. Approx. 100M 100 0.15

Adaboost 100M 100 0.004

D-opt. Design 20M 100 0.09

A-opt. Design 20M 100 0.19

Table 3.3: Dataset B

Problem N d ε

Conv. Approx. 500000 5000 0.13

Adaboost 500000 5000 0.003

D-opt. Design 100000 1000 0.03

A-opt. Design 100000 1000 0.09

Table 3.4: Dataset C

Problem Dataset N d ε

D-opt. Design Movielens 137768 500 0.18

D-opt. Design HEPMASS 1M 38 0.04

D-opt. Design MSD 515345 90 0.01

D-opt. Design YAHOO 1,823,179 100 0.09

A-opt. Design YAHOO 1,823,179 100 0.17

Conv. Approx. YAHOO 1,823,178 100 0.03

Table 3.5: Real Datasets
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(a) CONVEXAPPROXIMATION (b) ADABOOST

(c) D-OPTIMALDESIGN (d) A-OPTIMALDESIGN

Figure 3.1: Values of the objective function generated by the algorithms as a function of time
over Dataset A. We see that Serial FW converges faster than interior point methods. Comparing it
to Oracle FW, the benefits of exploiting the common information in serial computation are more
pronounced for experimental design objectives, where partial derivative computation is quadratic.
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though it requires more iterations to converge. Note that the objective values generated by interior-

point methods are non-monotone, as these methods alternate between improving feasibility and

optimality. Comparing Serial FW to Oracle FW, the benefits of exploiting the common information in

serial computation are more pronounced for experimental design objectives, where partial derivative

computation is quadratic.

3.6.3 Effect of Parallelism

We compare the speedup of Parallel FW over three serial implementations. The first is

Parallel FW with P = 1, i.e., our parallel Spark code using only one processor. The second is Serial

FW, as described in Alg. 4; the third is Oracle FW, which computes the gradient naı̈vely from scratch,

not exploiting the common information introduced in Prop. 1 and 2. We do not report results of

serial execution via CVXOPT, as the latter crashes with out-of-memory errors on all these inputs.

We execute 10 iterations of these serial implementations and then estimate the total running time

based on the average per-iteration running time; all values reported correspond to the same number

of iterations.

The measured speedups of Parallel FW over these serial implementations are shown in

Table 3.6. Increasing parallelism leads to significant speedups. For example, using 350 compute

cores, we can solve the 20M-variable instance of D-optimal Design in 79 minutes, when Serial FW

would take and 48.3 hours for the same problem and input. Note that, even in serial implementation,

exploiting Properties 1-3 leads to accelarated execution: this is evident from the fact that the speedup

over Oracle FW is considerably higher than over Serial FW. This is more prominent in the two

experimental design objectives: this is expected, as the complexity of computing the gradient is

O(Nd3), while by using the common information we can compute the gradient in O(Nd2). For

example, the same 20M-variable D-optimal instance would take more than 14 days for Oracle FW.

We note that, for the input sizes used in these experiments, the benefit of parallelism

saturates beyond 350 cores and 128 cores, for Datasets B and C, respectively. The reason is that for

this input size, after increasing the level of parallelism beyond these values, the cost of computing

the gradient at each core becomes negligible.

We further illustrate the effect of increasing parallelism on two large-scale synthetic

datasets: Dataset B, a dataset with N = O(20M) and d = 100 (Table 3.3), and Dataset C with

N = O(100K) and d = O(1K) (Table 3.4). Fig. 3.2 shows tε as a function of the level of parallelism,

measured in terms of the number of cores P , for each of the two datasets. We normalize tε by its
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Problem Dataset Speedup

vs.

Par-

allel

FW

with

P=1

Speedup

vs. Se-

rial

FW

Speedup

vs. Or-

acle

FW

# of cores

Conv. Approx. Dataset C 42 1.12 1.45 128

Conv. Approx. Dataset B 98 28.57 29.82 350

Conv. Approx. YAHOO 78 18.6 21.83 210

Adaboost Dataset C 45 1.24 2.07 128

Adaboost Dataset B 133 35.4 35.47 350

D-opt. Design Dataset C 48 12.7 112.3 128

D-opt. Design Dataset B 126 36.7 271.6 350

D-opt. Design HEPMASS 35 7.5 23.28 64

D-opt. Design Movielens 33 3.77 115.5 64

D-opt. Design MSD 35 6.52 37.24 64

D-opt. Design YAHOO 93 19 159.1 210

A-opt. Design Dataset C 49 10.5 125.07 128

A-opt. Design Dataset B 102 32.5 273.12 350

A-opt. Design YAHOO 90 20.3 164.95 210

Table 3.6: A summary of speedups (over three serial implementations) obtained by parallel FW for
each problem and dataset, along with the level of parallelism. Beyond this number of cores, no
significant speedup improvement is observed.
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(a) Dataset B (b) Dataset C

Figure 3.2: The tε as a function of the level of parallelism, measured in terms of cores P . Fig. 3.2a
shows results on the O(20M) variable dataset (Table 3.3) while Fig. 3.2b shows results on the dataset
with d = O(1000) (Table 3.4). We normalize tε by its value at the lowest level of parallelism (13134s,
27420s, 11727s, and 11375s, respectively, for each of the four problems in Fig. 3.2a and 487s, 486s,
2096s, and 4783s, respectively, in Fig. 3.2b). We see that increasing the level of parallelism speeds
up convergence.

value at P = 70 and P = 16, respectively. This lowest level of parallelism (P = 70 and P = 16) is

chosen so that the slowest execution time is moderate, i.e., approximately 10 hours. Figure 3.3 shows

objective F , as a function of time for different levels of parallelism. The highest level of parallelism

(e.g., 350 for dataset B) is the saturation point, beyond which no significant speedup is observed.

By comparing Figures 3.3a and 3.3b with Figures 3.3c and Figure 3.3d, we see that Parallel FW

converges much faster for Convex Approximation and Adaboost. The reason is that the objective

function in D-Optimal Design and A-optimal Design does not have a bounded curvature; therefore,

as mentioned in Section 3.2, FW for these problems does not have a O( 1
k ) convergence rate.

We also illustrate how parallelism affects performance on real datasets, summarized in

Table 3.5. For brevity, we only report D-Optimal Design for Movielens, HEPMASS, and MSD

datasets, and D-optimal design, A-optimal Design, and Convex Approximation for the YAHOO

dataset. Fig. 3.4 shows the measured tε for different levels of parallelism. For each dataset, tε

is normalized by the value of tε for the lowest level of parallelism. Again, we see that we gain a

significant speedup by parallelism.

3.6.4 Subsampling the Gradient

In this section, we study the effect of subsampling the gradient on the performance of FW.

We have seen that parallelism reduces the cost of computation of the gradients. An alternative is

to compute the gradient stochastically by subsampling only a few partial derivatives and using the
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(a) CONVEXAPPROXIMATION (b) ADABOOST

(c) D-OPTIMALDESIGN (d) A-OPTIMALDESIGN

Figure 3.3: The objective F as a function of time over Dataset B. We see that increasing the level of
parallelism makes convergence faster. By comparing Figures 3.3a and 3.3b with Figures 3.3c and
3.3d, we see that FW for D-Optimal Design and A-Optimal Design converges slower.

8 cores 16 cores 32 cores 64 cores
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HEPMASS

(a) D-optimal Design for Movielens,

MSD, and HEPMASS

35 cores 70 cores 140 cores 210 cores
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T
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D-optimal Design

A-optimal Design

Convex Approximation

(b) D-optimal Design, A-optimal Design,

and Convex Approximation for the YA-

HOO dataset

Figure 3.4: The summary of parallelism experiments on the real datasets. We normalize tε by
its value at the lowest level of parallelism (15247s, 3899s, and 4766s for Movielens, MSD, and
HEPMASS, respectively, in Fig. 3.4a, and 9888s, 7060s, and 1302s for D-optimal Design, A-optimal
Design, and Convex Approximation, respectively, in Fig 3.4b.
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(a) Sampled FW for D-OPTIMALDESIGN

and A-OPTIMALDESIGN

(b) Smoothened FW for D-

OPTIMALDESIGN and A-OPTIMALDESIGN

(c) Sampled FW for ADABOOST and CON-

VEXAPPROXIMATION

(d) Smoothened FW for ADABOOST and

CONVEXAPPROXIMATION

Figure 3.5: The measured tε under Sampled and Smoothened FW, over Dataset C. We normalize tε
by the measured tε for 16 cores, which is reported in Fig. 3.2. By comparing Figures 3.5a and 3.5c
with Fig. 3.2b, subsampling does not match the benefits of parallelism. In an ultra-low regime, e.g.,
p = 0.0005 convergence is very slow. Smoothened FW can enhance the performance in this case.

minimal in this sub-sampled set. This reduces the amount of computation occurring in each iteration.

Moreover, such a stochastic estimation of the gradient still guarantees convergence [115], albeit at a

slower rate. Therefore, subsampling decreases the computation time for each iteration; this has a

similar effect to increasing parallelism, without incurring additional communication overhead. In

contrast to increasing parallelism, however, subsampling may also increase the number of iterations

till convergence.

We consider two variants of subsampling. In Sampled FW, we compute each partial

derivative ∂F
∂θi

with probability p. Then, we find the minimum among the computed partial derivatives.

Note that this speeds derivative computations: at most p · N partial derivatives are computed, in

expectation. In Smoothened FW, we compute each partial derivative with probability p, but maintain

an exponentially-weighted moving average (EWMA) between the computed value and past values:

this estimate is used instead to compute the current minimum partial derivative.
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We use Dataset C (Table 3.4) in this experiment: we solve the corresponding problems

using Sampled FW and Smoothened FW on 16 cores. The results are shown in Fig. 3.5. Values tε

are normalized by tε for p = 1. This makes experiments in Figures 3.5 and 3.2b comparable: each

core computes the same number of partial derivatives in expectation.

By comparing Figures 3.5 and 3.2b, we see that subsampling matches the benefits of

parallelism, at least for large p, for D-optimal and A-optimal design. In contrast, the benefits of

subsampling for Convex Approximation and AdaBoost are almost negligible. This is because Parallel

FW guarantees a O( 1
k ) convergence rate for these problems. As a result, though subsampling reduces

the cost of computation per iteration, the increase in number of iterations negates this advantage.

In fact, when p is in an ultra-low regime, e.g., p = 0.0005, Sampled FW converges extremely

slowly for all problems. Interestingly, Smoothened FW performs better in this case, ameliorating

the performance deterioration. This is most evident in Figures 3.5d and 3.5c, where tε for Convex

Approximation and AdaBoost is considerably smaller under Smoothened FW.

3.6.5 LASSO Experiment

To show the performance of our algorithm on the cases beyond simplex constrained

problems, we solve the LASSO problem (3.23). We compare our distributed FW with distributed

ADMM.

The input data is synthetic and with N = 100, 000 and d = 1000. First, we solve the

following problem:

min
θ

1

2
‖X>θ − p‖22 + ‖θ‖1,

with distributed ADMM using 400 cores and for different values of ρ, which is a parameter controlling

convergence (see Section 8.3 of [13]). We then solve the LASSO with our Distributed FW algorithm,

setting K equal to the `1 norm of the solution obtained by ADMM. For a fair comparison, we use

400 cores. Fig. 3.6 shows the value of the squared loss 1
2‖Xθ − p‖

2
2 as a function of time for FW

and ADMM. As we see, FW outperforms ADMM.

3.7 Conclusion

We establish structural properties under which FW admits a highly scalable parallel

implementation via map-reduce. We show that problems distributed by our algorithm achieve

significant speedups. In particular, by using 350 cores we are able to solve a problem with 20 million
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Figure 3.6: The comparison between ADMM and our distributed Frank-Wolfe algorithm. Each
algorithm uses 400 cores.

variables in 79 minutes, while the serial implementation takes 165 hours. Moreover, we show that

our results extend beyond the simplex constraint. For instance, our distributed FW algorithm can be

applied to problems with the popular and widely-used `1-norm constraint.

The Frank-Wolfe algorithm is related to approximate algorithms for so-called submod-

ular maximization problems. Submodularity is a structural property associated with set functions.

Submodularity captures the notion of diminishing returns or decreasing marginal utilities [133];

this makes it a suitable objective in computer science or economics to represent subset evaluations

of, e.g, a set of utilities [133]. In particular, maximizing submodular functions subject to matroid

constraints has numerous applications in the combinatorial optimization domain, such as variable

selection [134], dictionary learning [135, 136], document summarization [137, 138], etc. Maxi-

mizing submodular functions subject to matroid constraints are known as the convex optimization

counterpart in the combinatorial optimization domain [133]: though NP-hard, these problems can be

solved with approximate guarantees [39, 139, 140]. A greedy algorithm [139] produces a solution

that is guaranteed to be within 1/2 ratio of the optimal solution. The so-called continuous greedy

algorithm improved this ratio to (1− 1/e) [141, 40]; moreover, this ratio cannot be improved further

for polynomial-time algorithms [142]. The continuous greedy algorithm is in fact a variant of

FW. It maximizes a multi-linear relaxation [39] of the original submodular maximization problem.

Through this connection, FW has important applications in solving these combinatorial optimization

problems. Parallelizing this variant of FW, which solves generic submodular optimization problems

with guarantees is an important direction as a future work.

Though submodularity is conventionally defined for set functions, its definition has also

been extended for continuous functions [143, 144]. More recently, Bian et al. [140] defined DR-

submodular functions, which are a subset of the continuous submodular functions. The scope of the

DR-submodular functions comprises a subset of convex functions, a subset of concave functions, and

63



CHAPTER 3. FRANK-WOLFE VIA MAP-REDUCE

a subset of functions that are neither convex nor concave. Moreover, they show that many interesting

computer science problems such as, maximzing linear extensions, e.g., the Lovasz extension [145],

of submodular set functions, non-convex/non-concave quadratic programming, optimal budget

allocation, etc, have DR-submodular objectives. They also prove that a FW variant, which is similar

to the continuous greedy algorithm, maximizes the monotone DR-submodular functions again with

the (1 − 1/e) ratio within the optimal solution. In other words, this FW variant, with guarantees,

solves a class of generic problems with diverse applications, which interestingly includes non-convex

optimization problems. In particular, we apply the continuous greedy algorithm in the next chapter

for designing cache networks. Moreover, another useful area as future work is parallelizing this

FW variant: this allows to solve large-scale monotone DR-submodular maximization problems in a

moderate time.
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Chapter 4

Design of Kelly Cache Networks via

Submodular Maximization

Kelly networks [146] are multi-class networks of queues capturing a broad array of queue

service disciplines, including FIFO, LIFO, and processor sharing. Both Kelly networks and their

generalizations (including networks of quasi-reversible and symmetric queues) are well-studied,

classic topics [146, 147, 148, 149]. One of their most appealing properties is that their steady-state

distributions have a product-form: as a result, steady state properties such as expected queue sizes,

packet delays, and server occupancy rates have closed-form formulas as functions of, e.g., routing

and scheduling policies.

Here, we consider Kelly networks in which nodes are equipped with caches, i.e., storage

devices of finite capacity, which can be used to store objects. Exogenous requests for objects are

routed towards nodes that store them; upon reaching a node that stores the requested object, a

response packet containing the object is routed towards the request source. As a result, object traffic

in the network is determined not only by the demand but, crucially, by where objects are cached.

This abstract setting is motivated by–and can be used to model–various networking applications

involving the placement and transmission of content. This includes information centric networks

(ICNs) [150, 151, 7], content delivery networks (CDNs) [152, 153], web-caches [154, 155, 156],

wireless/femtocell networks [157, 158, 159], and peer-to-peer networks [160, 161], to name a few.

In many of these applications, determining the object placement, i.e., how to place objects

in network caches, is a decision that can be made by the network designer in response to object

popularity and demand. To that end, we are interested in determining how to place objects in caches
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so that traffic attains a design objective such as minimizing delay. Several papers have studied the

cache optimization problems under restricted topologies [162, 163, 164, 165, 152]. These works

model the network as a bipartite graph: nodes generating requests connect directly to caches in a

single hop. The resulting algorithms do not readily generalize to arbitrary topologies. In general,

the approximation technique of Ageev and Sviridenko [166] applies to this bipartite setting, and

additional approximation algorithms have been devised for several variants [162, 163, 164, 152]. We

differ by (a) considering a multi-hop setting, and (b) introducing queuing, which none of the above

works considers.

Submodular function maximization subject to matroid constraints appears in many impor-

tant problems in combinatorial optimization; for a brief review of the topic and applications, see [91]

and [133], respectively. Nemhauser et al. [38] show that the greedy algorithm produces a solution

within 1/2 of the optimal. Vondrák [141] and Calinescu et al. [40] show that the continuous-greedy

algorithm produces a solution within (1 − 1/e) of the optimal in polynomial time, which cannot

be further improved [142]. In the general case, the continuous-greedy algorithm requires sampling

to estimate the gradient of the so-called multilinear relaxation of the objective (see Sec. 4.2.1).

One of our main contributions is to show that MAXCG, the optimization problem we study here,

exhibits additional structure: we use this to construct a sampling-free estimator of the gradient via

a power-series or Taylor expansion. To the best of our knowledge, we are the first to use such an

expansion to eschew sampling; this technique may apply to submodular maximization problems

beyond MAXCG.

In particular, we make the following contributions.

• We study the problem of optimizing the placement of objects in caches in Kelly cache networks

of M/M/1 queues, with the objective of minimizing a cost function of the system state. We

show that, for a broad class of cost functions, including packet delay, system size, and server

occupancy rate, this optimization amounts to a submodular maximization problem with matroid

constraints. This result applies to general Kelly networks with fixed service rates; in particular,

it holds for FIFO, LIFO, and processor sharing disciplines at each queue.

• The so-called continuous greedy algorithm [40] attains a 1 − 1/e approximation for this

NP-hard problem. However, it does so by computing an expectation over a random variable

with exponential support via randomized sampling. The number of samples required to attain

the 1−1/e approximation guarantee can be prohibitively large in realistic settings. Our second

contribution is to show that, for Kelly networks of M/M/1 queues, this randomization can be
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entirely avoided: a closed-form solution can be computed using the Taylor expansion of our

problem’s objective. To the best of our knowledge, we are the first to identify a submodular

maximization problem that exhibits this structure, and to exploit it to eschew sampling.

• Finally, we extend our results to networks of M/M/k and symmetric M/D/1 queues, and prove a

negative result: submodularity does not arise in networks of M/M/1/k queues. We extensively

evaluate our proposed algorithms over several synthetic and real-life topologies.

The remainder of this chapter is organized as follows. We present our mathematical model

of a Kelly cache network along with our problem formulation in Sec. 4.1. We show our results

on submodularity, the continuous-greedy algorithm in networks of M/M/1 queues, and our novel

algorithm in Section 4.2. Our extensions are described in Sec. 4.3; our numerical evaluation is

in Sec. 4.4. Finally, we conclude and explain several recent developments related to our study in

Sec. 4.5.

4.1 Model

4.1.1 Kelly Cache Networks

Motivated by applications such as ICNs [150], CDNs [152, 153], and peer-to-peer networks

[160], we introduce Kelly cache networks. In contrast to classic Kelly networks, each node is

associated with a cache of finite storage capacity. Exogenous traffic consisting of requests is routed

towards nodes that store objects; upon reaching a node that stores the requested object, a response

packet containing the object is routed towards the node that generated the request. As a result, content

traffic in the network is determined not only by demand but, crucially, by how contents are cached.

An illustration highlighting the differences between Kelly cache networks, introduced below, and

classic Kelly networks, can be found in Fig. 4.1.

Although we describe Kelly cache networks in terms of FIFO M/M/1 queues, the product

form distribution (c.f. (4.7)) arises for many different service principles beyond FIFO (c.f. Section

3.1 of [146]) including Last-In First-Out (LIFO) and processor sharing. All results we present extend

to these service disciplines; we discuss more extensions in Sec. 4.3.

Kelly Cache Networks. We now formally describe Kelly cache networks.

Graphs and Paths. We use the notation G(V,E) for a directed graph G with nodes V and edges

E ⊆ V × V . A directed graph is called symmetric or bidirectional if (u, v) ∈ E if and only if

(v, u) ∈ E. A path p is a sequence of adjacent nodes, i.e., p = p1, p2, . . . , pK where (pk, pk+1) ∈ E,
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Figure 4.1: (a) Example of a Kelly network. Packets of class r enter the network with rate λr, are
routed through consecutive queues over path pr, and subsequently exit the network. (b) Example of a
Kelly cache network. Each node v ∈ V is equipped with a cache of capacity cv. Exogenous requests
of type r for object ir enter the network and are routed over a predetermined path pr towards the
designated server storing ir. Upon reaching an intermediate node u storing the requested object ir,
a response packet containing the object is generated. The response is then forwarded towards the
request’s source in the reverse direction on path pr. Request packets are of negligible size compared
to response messages; as a result, we ignore request traffic and focus on queuing due to response
traffic alone.

for all 1 ≤ k < K ≡ |p|. A path is simple if it contains no loops (i.e., each node appears once). We

use the notation v ∈ p, where v ∈ V , to indicate that node v appears in the path, and e ∈ p, where

e = (u, v) ∈ E, to indicate that nodes u,v are two consecutive (and, therefore, adjacent) nodes in p.

For v ∈ p, where p is simple, we denote by kp(v) ∈ {1, . . . , |p|} the position of node v ∈ V in p,

i.e., kp(v) = k if pk = v.

Network Definition. Formally, we consider a Kelly network of M/M/1 FIFO queues, represented by

a symmetric directed graph G(V,E). As in classic Kelly networks, each edge e ∈ E is associated

with an M/M/1 queue with service rate µe1. In addition, each node has a cache that stores objects of

equal size from a set C, the object catalog. Each node v ∈ V may store at most cv ∈ N objects from

C in its cache. Hence, if xvi ∈ {0, 1} is a binary variable indicating whether node v ∈ V is storing

object i ∈ C, then ∑
i∈C

xvi ≤ cv, for all v ∈ V. (4.1)

We refer to x = [xvi]v∈V,i∈C ∈ {0, 1}|V ||C| as the global placement or, simply, placement vector. We

1We associate queues with edges for concreteness. Alternatively, queues can be associated with nodes, or both nodes
and edges; all such representations lead to product form distributions (4.7), and all our results extend to these cases.
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denote by

D =
{
x ∈ {0, 1}|V ||C| :

∑
i∈C xvi ≤ cv, ∀v ∈ V

}
, (4.2)

the set of feasible placements that satisfy the storage capacity constraints. We assume that for every

object i ∈ C, there exists a set of nodes Si ⊆ V that permanently store i. We refer to nodes in Si as

designated servers for i ∈ C. We assume that designated servers store i in permanent storage outside

their cache. Put differently, the aggregate storage capacity of a node is c′v = cv + |{i : v ∈ Si}|, but

only the non-designated slots cv are part of the system’s design.

Object Requests and Responses. Traffic in the cache network consists of two types of packets:

requests and responses, as shown in Fig. 4.1(b). Requests for an object are always routed towards one

of its designated servers, ensuring that every request is satisfied. However, requests may terminate

early: upon reaching any node that caches the requested object, the latter generates a response

carrying the object. This is forwarded towards the request’s source, following the same path as the

request, in reverse. Consistent with prior literature [7, 167], we treat request traffic as negligible when

compared to response traffic, which carries objects, and henceforth focus only on queues bearing

response traffic.

Formally, a request and its corresponding response are fully characterized by (a) the object

being requested, and (b) the path that the request follows. That is, for the set of requestsR, a request

r ∈ R is determined by a pair (ir, pr), where ir ∈ C is the object being requested and pr is the path

the request follows. Each request r is associated with a corresponding Poisson arrival process with

rate λr ≥ 0, independent of other arrivals and service times. We denote the vector of arrival rates by

λ = [λr]r∈R ∈ R|R|+ . For all r ∈ R, we assume that the path pr is well-routed [7], that is: (a) path

pr is simple, (b) the terminal node of the path is a designated server, i.e., a node in Sir , and (c) no

other intermediate node in pr is a designated server. As a result, requests are always served, and

response packets (carrying objects) always follow a sub-path of pr in reverse towards the request

source (namely, pr1).

Steady State Distribution. Given an object placement x ∈ D, the resulting system is a multi-class

Kelly network, with packet classes determined by the request setR. This is a Markov process over

the state space determined by queue contents. In particular, let nre be the number of packets of class

r ∈ R in queue e ∈ E, and

ne =
∑
r∈R

nre (4.3)
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be the total queue size. The state of a queue ne ∈ Rne , e ∈ E, is the vector of length ne representing

the class of each packet in each position of the queue. The system state is then given by n = [ne]e∈E ;

we denote by Ω the state space of this Markov process.

In contrast to classic Kelly networks, network traffic and, in particular, the load on each

queue, depend on placement x. Indeed, if (v, u) ∈ pr for r ∈ R, the arrival rate of responses of class

r ∈ R in queue (u, v) ∈ E is:

λr(u,v)(x,λ) = λr
kpr (v)∏
k′=1

(1− xpr
k′ i

r), for (v, u) ∈ pr, (4.4)

i.e., responses to requests of class r pass through edge (u, v) ∈ E if and only if no node preceding u

in the path pr stores object ir–see also Fig. 4.1(b). Note that (4.4) presumes queues on pr are stable.

As µ(u,v) is the service rate of the queue in (u, v) ∈ E, the load on edge (u, v) ∈ E is:

ρ(u,v)(x,λ) =
λ(u,v)(x,λ)

µ(u,v)
, (4.5)

where

λ(u,v)(x,λ) =
∑

r∈R:(v,u)∈pr λ
r
(u,v)(x,λ) (4.6)

is the total arrival rate of responses in queue (u, v) ∈ E. The Markov process {n(t); t ≥ 0} is

positive recurrent when ρ(u,v)(x,λ) < 1, for all (u, v) ∈ E [146, 168]. Then, the steady-state

distribution has a product form, i.e.:

π(n) =
∏
e∈E πe(ne), n ∈ Ω, (4.7)

where

πe(ne) = (1− ρe(x,λ))
∏
r∈R:e∈pr

(
λre(x,λ)
µe

)nre
, (4.8)

and λre(x,λ), ρe(x,λ) are given by (4.4), (4.5), respectively. As a consequence, the queue sizes ne,

e ∈ E, also have a product form distribution in steady state, and their marginals are given by:

P(ne = k) = (1− ρe(x,λ))ρke(x,λ), k ∈ N. (4.9)

Stability Region. Given a placement x ∈ D, a vector of arrival rates λ = [λr]r∈R yields a stable

(i.e., positive recurrent) system if and only if λ ∈ Λx, for

Λx := {λ : λ ≥ 0, ρe(x,λ) < 1, ∀e ∈ E} ⊂ R|R|+ , (4.10)

70



CHAPTER 4. DESIGN OF KELLY CACHE NETWORKS VIA SUBMODULAR MAXIMIZATION

where loads ρe, e ∈ E, are given by (4.5). Conversely, given a vector λ ∈ R|R|+ ,

Dλ = {x ∈ D : ρe(x,λ) < 1,∀e ∈ E} ⊆ D (4.11)

is the set of feasible placements under which the system is stable. It is easy to confirm that, by

the monotonicity of ρe w.r.t. x, if x ∈ Dλ and x′ ≥ x, then x′ ∈ Dλ, where the vector inequality

x′ ≥ x is component-wise. In particular, if 0 ∈ Dλ (i.e., the system is stable without caching), then

Dλ = D.

4.1.2 Cache Optimization

Our approach is closest to, and inspired by, recent work by Shanmugam et al. [157] and

Ioannidis and Yeh [7]. Ioannidis and Yeh consider a setting very similar to ours but without queuing:

edges are assigned a fixed weight, and the objective is a linear function of incoming traffic scaled

by these weights. This can be seen as a special case of our model, namely, one where edge costs

are linear (see also Eq. (4.16) in Sec. 4.1.2). Shanmugam et al. [157] study a similar optimization

problem, restricted to the context of femtocaching. The authors show that this is an NP-hard,

submodular maximization problem with matroid constraints. They provide a 1− 1/e approximation

algorithm based on a technique by Ageev and Sviridenko [166]: this involves maximizing a concave

relaxation of the original objective, and rounding via pipage-rounding[166]. Ioannidis and Yeh show

that the same approximation technique applies to more general cache networks with linear edge costs.

They also provide a distributed, adaptive algorithm that attains an 1− 1/e approximation. The same

authors extend this framework to jointly optimize both caching and routing decisions [167].

Given a Kelly cache network represented by graph G(V,E), service rates µe, e ∈ E,

storage capacities cv, v ∈ V , a set of requests R, and arrival rates λr, for r ∈ R, we wish to

determine placements x ∈ D that optimize a certain design objective. In particular, we seek

placements that are solutions to optimization problems of the following form:

MINCOST

Minimize: C(x) =
∑

e∈E Ce(ρe(x,λ)), (4.12a)

subj. to: x ∈ Dλ, (4.12b)

where Ce : [0, 1) → R+, e ∈ E, are positive cost functions, ρe : D × R|R|+ → R+ is the load on

edge e, given by (4.5), and Dλ is the set of feasible placements that ensure stability, given by (4.11).

We make the following standing assumption on the cost functions appearing in MINCOST:
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Assumption 1. For all e ∈ E, functions Ce : [0, 1)→ R+ are convex and non-decreasing on [0, 1).

Assumption 1 is natural; indeed it holds for many cost functions that often arise in practice.

We list several examples:

Example 1. Queue Size: Under steady-state distribution (4.7), the expected number of packets in

queue e ∈ E is given by

E[ne] = Ce(ρe) =
ρe

1− ρe
, (4.13)

which is indeed convex and non-decreasing for ρe ∈ [0, 1). Note that, for Ce given by (4.13),

objective (4.12a) captures the expected total number of packets in the system in steady state.

Example 2. Delay: From Little’s Theorem [168], the expected delay experienced by a packet in the

system is

E[T ] =
1

‖λ‖1

∑
e∈E

E[ne], (4.14)

where ‖λ‖1 =
∑

r∈R λ
r is the total arrival rate, and E[ne] is the expected size of each queue. Thus,

the expected delay can also be written as the sum of functions that satisfy Assumption 1. We note

that the same is true for the sum of the expected delays per queue e ∈ E, as the latter are given by

E[Te] =
1

λe
E[ne] =

1

µe(1− ρe)
, (4.15)

which are also convex and non-decreasing in ρe.

Example 3. Queuing Probability/Load per Edge: In a FIFO queue, the queuing probability is the

probability of arriving in a system where the server is busy; by (4.9), this is:

Ce(ρe) = ρe = λe/µe, (4.16)

which is again non-decreasing and convex. This is also, of course, the load per edge. By treating

1/µe as the weight of edge e ∈ E, this setting recovers the objectives of Shanmugam et al. [157] and

Ioannidis and Yeh [7] as a special case of our model.

Example 4. Monotone Separable Costs: More generally, Assumption 1 holds for arbitrary mono-

tone separable costs, i.e., costs that (1) are summed across queues, (2) depend only on queue sizes

ne, and (3) are non-decreasing. Formally:

Lemma 4.1.1. Consider a state-dependent cost function c : Ω→ R+ such that:

c(n) =
∑
e∈E

ce(ne),
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where ce : N→ R+, e ∈ E, are non-decreasing functions of the queue sizes ne, e ∈ E. Then, the

steady state cost under distribution (4.7) takes the form (4.12a), i.e.,

E[c(n)] =
∑
e∈E

Ce(ρe)

where Ce : [0, 1)→ R+ satisfy Assumption 1.

Proof. As the cost at state n ∈ Ω can be written as c(n) =
∑

e∈E ce(ne), we have that E[c(n)] =∑
e∈E E[ce(ne)]. On the other hand, as ce(ne) ≥ 0,

E[ce(ne)] =

∞∑
n=0

ce(n)P(ne = n)

= ce(0) +

∞∑
n=0

(ce(n+ 1)− ce(n))P(ne > n)

(4.9)
= ce(0) +

∞∑
n=0

(ce(n+ 1)− ce(n))ρne (4.17)

As ce is non-decreasing, ce(n + 1) − ce(n) ≥ 0 for all n ∈ N. On the other hand, for all n ∈ N,

ρn is a convex non-decreasing function of ρ in [0, 1), so E[ce(ne)] is a convex function of ρe as a

positively weighted sum of convex non-decreasing functions.

In summary, MINCOST captures many natural cost objectives, while Assumption 1 holds

for any non-decreasing cost function that depends only on queue sizes.

4.2 Submodularity of Cache Optimization and Algorithms

Our work can be seen as an extension of [7, 157], in that it incorporates queuing in the

cache network. In contrast to both [7] and [157] however, costs like delay or queue sizes are highly

non-linear in the presence of queuing. From a technical standpoint, this departure from linearity

requires us to employ significantly different optimization methods than the ones in [7, 157]. In

particular, our objective does not admit a concave relaxation and, consequently, the technique by

Ageev and Sviridenko [166] used in [7, 157] does not apply. In fact, Problem MINCOST is NP-hard;

this is true even when cost functions ce are linear, and the objective is to minimize the sum of the

loads per edge [7, 157]. In what follows, we outline our methodology for solving this problem;

it relies on the fact that the objective of MINCOST is a supermodular set function; our first main

contribution is to show that this property is a direct consequence of Assumption 1.
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Cost Supermodularity and Caching Gain. First, observe that the cost function C in MINCOST

can be naturally expressed as a set function. Indeed, for S ⊂ V × C, let xS ∈ {0, 1}|V ||C| be

the binary vector whose support is S (i.e., its non-zero elements are indexed by S). As there

is a 1-1 correspondence between a binary vector x and its support supp(x), we can interpret

C : {0, 1}|V ||C| → R+ as a set function C : V × C → R+ via C(S) , C(xS). Then, the following

theorem holds:

Theorem 4.2.1. Under Assumption 1, C(S) , C(xS) is non-increasing and supermodular over

{supp(x) : x ∈ Dλ}.

Proof. We use the following auxiliary lemma (see, e.g., [91]); we prove this here for completeness.

Lemma 4.2.2. Let f : R→ R be a convex and non-decreasing function. Also, let g : X → R be a

non-increasing supermodular set function. Then h , f ◦ g is also supermodular.

Proof. Since g is non-increasing, for any x,x′ ⊆ X we have g(x ∩ x′) ≥ g(x) ≥ g(x ∪ x′), and

g(x ∩ x′) ≥ g(x′) ≥ g(x ∪ x′). Due to supermodularity of g, we can find α, α′ ∈ [0, 1], α+ α′ ≥ 1

such that g(x) = (1 − α)g(x ∩ x′) + αg(x ∪ x′), and g(x′) = (1 − α′)g(x ∩ x′) + α′g(x ∪ x′).

Then, we have

f(g(x)) + f(g(x′)) ≤ (1− α)f(g(x ∩ x′)) + αf(g(x ∪ x′))

+ (1− α′)f(g(x ∩ x′)) + α′f(g(x ∪ x′))

= f(g(x ∩ x′)) + f(g(x ∪ x′))

+ (1− α− α′)(f(g(x ∩ x′))− f(g(x ∪ x′)))

≤ f(g(x ∩ x′)) + f(g(x ∪ x′)),

where the first inequality is due to convexity of f , and the second one is because α + α′ ≥ 1 and

f(g(.)) is non-increasing. This proves h(x) , f(g(x)) is supermodular.

To conclude the proof of Thm. 4.2.1, observe that it is easy to verify that ρe,∀e ∈ E,

is supermodular and non-increasing in S (see also [7]). Since, by Assumption 1, Ce is a non-

decreasing function, then, Ce(S) , Ce(ρu,v(S)) is non-increasing. By Lemma 4.2.2, Ce(S) is

also supermodular. Hence, the cost function is non-increasing and supermodular as the sum of

non-increasing and supermodular functions.

In light of Lemma 4.1.1, Thm. 4.2.1 implies that supermodularity arises for a broad

array of natural cost objectives, including expected delay and system size; it also applies under
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the full generality of Kelly networks under which a product form arises, including FIFO, LIFO,

and round robin service disciplines. Armed with this theorem, we turn our attention to converting

MINCOST to a submodular maximization problem. In doing so, we face the problem that the domain

Dλ, determined not only by storage capacity constraints, but also by stability, may be difficult

to characterize. Nevertheless, we show that a problem that is amenable to approximation can be

constructed, provided that a placement x0 ∈ Dλ is known.

In particular, suppose that we have access to a single x0 ∈ Dλ. We define the caching gain

F : Dλ → R+ as F (x) = C(x0) − C(x). Note that, for x ≥ x0, F (x) is the relative decrease in

the cost compared to the cost under x0. We consider the following optimization problem:

MAXCG

Maximize: F (x) = C(x0)− C(x) (4.18a)

subj. to: x ∈ D,x ≥ x0 (4.18b)

Recall that, if 0 ∈ Dλ, then Dλ = D; in this case, taking x0 = 0 ensures that problems MINCOST

and MaxCG are equivalent. If x0 6= 0, the above formulation attempts to maximize the gain restricted

to placements x ∈ D that dominate x0: such placements necessarily satisfy x ∈ Dλ, as x0 ∈ Dλ.

Thm. 4.2.1 has the following immediate implication:

Corollary 4.2.2.1. The caching gain F (S) , F (xS) is non-decreasing and submodular over

{supp(x) : x ∈ Dλ}.

Greedy Algorithm. Constraints (4.18b) define a (partition) matroid [40, 157]. This, along with the

submodularity and monotonicity of F imply that we can produce a solution within 1
2 -approximation

from the optimal via the greedy algorithm [39]. The algorithm, summarized in Alg. 6, iteratively

allocates items to caches that yield the largest marginal gain. The solution produced by Algorithm 6

is guaranteed to be within a 1
2 -approximation ratio of the optimal solution of MAXCG [38]. The

approximation guarantee of 1
2 is tight:

Lemma 4.2.3. For any ε > 0, there exists a cache network such that the greedy algorithm solution

is within 1
2 + ε from the optimal, when the objective is the sum of expected delays per edge.

Proof. Consider the path topology illustrated in Fig. 4.2. Assume that requests for files 1 and 2

are generated at node u with rates λ1 = λ2 = δ, for some δ ∈ (0, 1). Files 1 and 2 are stored

permanently at v and z, respectively. Caches exist only on u and w, and have capacity cu = cw = 1.

Edges (u, v), (w, z) have bandwidth µ(u,v) = µ(w,z) = 1, while edge (u,w) is a high bandwidth link,
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Figure 4.2: A path graph, illustrating that the 1/2-approximation ratio of greedy is tight. Greedy
caches item 2 in node u, while the optimal decision is to cache item 1 in u and item 2 in node w. For
M large enough, the approximation ratio can be made arbitrarily close to 1/2. In our experiments in
Sec. 4.4, we set δ = 0.5 and M = 200.

Algorithm 6 Greedy
Require: F : D → R+,x0

1: x← x0

2: while A(x) := {(v, i) ∈ V × C : x + evi ∈ D} is not empty do

3: (v∗, i∗)← arg max(v,i)∈A(x) (F (x + evi)− F (x))

4: x← x + ev∗i∗

5: end while

6: return x

having capacity M � 1. Let x0 = 0. The greedy algorithm starts from empty caches and adds item

2 at cache u. This is because the caching gain from this placement is c(u,w) + c(w,z) = 1
M−δ + 1

1−δ ,

while the caching gain of all other decisions is at most 1
1−δ . Any subsequent caching decisions do

not change the caching gain. The optimal solution is to cache item 1 at u and item 2 at w, yielding a

caching gain of 2/(1− δ). Hence, the greedy solution attains an approximation ratio 0.5 · (1+ 1−δ
M−δ ).

By appropriately choosing M and δ, this can be made arbitrarily close to 0.5.

As we discuss in Sec. 4.4, the greedy algorithm performs well in practice for some

topologies; however, Lemma 4.2.3 motivates us to seek alternative algorithms, that attain improved

approximation guarantees. We note that it is easy to extend Lemma 4.2.3 to other objectives,

including, e.g., expected delay, queue size, etc. We note also that tight instances can be constructed

using caches with capacities larger than 1 (see, e.g., Fig. 4.4).

4.2.1 Continuous-Greedy Algorithm

The continuous-greedy algorithm by Calinescu et al. [40] attains a tighter guarantee than

the greedy algorithm, raising the approximation ratio from 0.5 to 1 − 1/e ≈ 0.63. The algorithm

maximizes the so-called multilinear extension of objective F , thereby obtaining a fractional solution
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Algorithm 7 Continuous-Greedy
Require: G : D̃ → R+, x0, stepsize 0 < γ ≤ 1

1: t← 0, k ← 0 y0 ← x0

2: while t < 1 do

3: mk ← arg maxm∈D̃〈m,∇G(yk)〉
4: γk ← min{γ, 1− t}
5: yk+1 ← yk + γkmk, t← t+ γk, k ← k + 1

6: end while

7: return yk

Y in the convex hull of the constraint space. The resulting solution is then rounded to produce an

integral solution. The algorithm requires estimating the gradient of the multilinear extension via

sampling; interestingly, we prove that MAXCG exhibits additional structure, which can be used to

construct a polynomial-time estimator of this gradient that eschews sampling altogether, by using a

Taylor expansion.

Algorithm Overview. Formally, the multilinear extension of the caching gain F is defined as follows.

Define the convex hull of the set defined by the constraints (4.18b) in MAXCG as:

D̃ = conv({x : x ∈ D,x ≥ x0}) ⊆ [0, 1]|V ||C| (4.19)

Intuitively, y ∈ D̃ is a fractional vector in R|V ||C| satisfying the capacity constraints, and the bound

y ≥ x0.

Given a y ∈ D̃, consider a random vector x in {0, 1}|V ||C| generated as follows: for

all v ∈ V and i ∈ C, the coordinates xvi ∈ {0, 1} are independent Bernoulli variables such that

P(xvi = 1) = yvi. The multilinear extension G : D̃ → R+ of F : Dλ → R+ is defined via

expectation

G(y) = Ey[F (x)], (4.20)

parameterized by y ∈ D̃. That is:

G(y) =
∑

x∈{0,1}|V ||C|
F (x)×

∏
(v,i)∈V×C

yxvivi (1− yvi)1−xvi , (4.21)

The continuous-greedy algorithm, summarized in Alg. 7, proceeds by first producing a

fractional vector y ∈ D̃. Starting from y0 = x0, the algorithm iterates over:

mk ∈ arg maxm∈D̃〈m,∇G(yk)〉, (4.22a)

yk+1 = yk + γkmk, (4.22b)
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for an appropriately selected step size γk ∈ [0, 1]. Intuitively, this yields an approximate solution to

the non-convex problem:
Maximize: G(y) (4.23a)

subj. to: y ∈ D̃. (4.23b)

Even though (4.23) is not convex, the output of Alg. 7 is within a 1− 1/e factor from the optimal

solution y∗ ∈ D̃ of (4.23). This fractional solution can be rounded to produce a solution to MAXCG

with the same approximation guarantee using either the pipage rounding [166] or the swap rounding

[40, 169] schemes. Note that the maximization in (4.22a) is a Linear Program (LP): it involves

maximizing a linear objective subject to a set of linear constraints, and can thus be computed in

polynomial time. However, this presumes access to the gradient ∇G. On the other hand, the

expectation G(y) = Ey[F (x)] alone, given by (4.21), involves a summation over 2|V ||C| terms, and

it may not be easily computed in polynomial time. To address this, the customary approach is to

first generate random samples x and then use these to produce an unbiased estimate of the gradient

(see, e.g., [40]); this estimate can be used in Alg. 7 instead of the gradient. Before presenting our

estimator tailored to MAXCG, we first describe this sampling-based estimator.

A Sampling-Based Estimator. Function G is linear when restricted to each coordinate yvi, for some

v ∈ V , i ∈ C (i.e., when all inputs except yvi are fixed). As a result, the partial derivative of G w.r.t.

yvi can be written as:

∂G(y)
∂yvi

= Ey[F (x)|xvi = 1]− Ey[F (x)|xvi = 0] ≥ 0, (4.24)

where the last inequality is due to monotonicity of F . One can thus estimate the gradient by (a)

producing T random samples x(`), ` = 1, . . . , T of the random vector x, consisting of independent

Bernoulli coordinates, and (b) computing, for each pair (v, i) ∈ V × C, the average

∂̂G(y)
∂yvi

= 1
T

∑T
`=1

(
F ([x`]+(v,i))− F ([x`]−(v,i))

)
, (4.25)

where [x]+(v,i),[x]−(v,i) are equal to vector x with the (v, i)-th coordinate set to 1 and 0, respectively.

Using this estimate, Alg. 7 is poly-time and attains an approximation ratio arbitrarily close to 1− 1/e

for appropriately chosen T . In particular, the following theorem holds:

Theorem 4.2.4. [Calinescu et al. [40]] Consider Alg. 7, with ∇G(yk) replaced by the sampling-

based estimate ∇̂G(yk), given by (4.25). Set T = 10
δ2

(1 + ln(|C||V |)), and γ = δ, where δ =

1
40|C||V |·(

∑
v∈V cv)2

. Then, the algorithm terminates after K = 1/γ = 1/δ steps and, with high

probability,

G(yK) ≥ (1− (1− δ)1/δ)G(y∗) ≥ (1− 1/e)G(y∗),
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where y∗ is an optimal solution to (4.23).

The proof of the theorem can be found in Appendix A of Calinescu et al. [40] for general

submodular functions over arbitrary matroid constraints; we state Thm. 4.2.4 here with constants T

and γ set specifically for our objective G and our set of constraints D̃.

Complexity. Under this parameterization of T and γ, Alg. 7 runs in polynomial time. More

specifically, note that 1/δ = O(|C||V | · (
∑

v∈V cv)
2) is polynomial in the input size. Moreover, the

algorithm runs for K = 1/δ iterations in total. Each iteration requires T = O( 1
δ2

(1 + ln(|C||V |)
samples, each involving a polynomial computation (as F can be evaluated in polynomial time).

LP (4.22a) can be solved in polynomial time in the number of constraints and variables, which are

O(|V ||C|). Finally, the rounding schemes require at most O(|V ||C|) steps.

4.2.2 A Novel Estimator via Taylor Expansion

The classic approach to estimate the gradient via sampling has certain drawbacks. The

number of samples T required to attain the 1− 1/e ratio is quadratic in |V ||C|. In practice, even for

networks and catalogs of moderate size (say, |V | = |C| = 100), the number of samples becomes

prohibitive (of the order of 108). Producing an estimate for∇G via a closed form computation that

eschews sampling thus has significant computational advantages. In this section, we show that the

multilinear relaxation of the caching gain F admits such a closed-form characterization.

We say that a polynomial f : Rd → R is in Weighted Disjunctive Normal Form (W-DNF)

if it can be written as

f(x) =
∑

s∈S βs ·
∏
j∈I(s)(1− xj), (4.26)

for some index set S, positive coefficients βs > 0, and index sets I(s) ⊆ {1, . . . , d}. Intuitively,

treating binary variables xj ∈ {0, 1} as Boolean values, each W-DNF polynomial can be seen as a

weighted sum (disjunction) among products (conjunctions) of negative literals. These polynomials

arise naturally in the context of our problem; in particular:

Lemma 4.2.5. For all k ≥ 1, x ∈ D, and e ∈ E, ρke(x,λ) is a W-DNF polynomial whose coefficients

depend on λ.

Proof. We prove this by induction on k ≥ 1. Observe first that, by (4.5), the load on each edge

e = (u, v) ∈ E can be written as a polynomial of the following form:

ρe(x,λ) =
∑
r∈Re

βr(λ) ·
∏

j∈Ie(r)

(1− xj), (4.27)
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for appropriately defined

Re = R(u,v) = {r ∈ R : (v, u) ∈ pr}, (4.28a)

Ie(r) = {(w, ir) ∈ V × C : w ∈ pr, kpr(w) ≤ kpr(v)}, (4.28b)

βr(λ) = λr/µe. (4.28c)

In other words, ρe : Dλ → R is indeed a W-DNF polynomial. For the induction step,

observe that W-DNF polynomials, seen as functions over the integral domain Dλ, are closed under

multiplication. In particular, the following lemma holds:

Lemma 4.2.6. Given two W-DNF polynomials f1 : Dλ → R and f2 : Dλ → R, given by

f1(x) =
∑
r∈R1

βr
∏

t∈I1(r)

(1− xt), and

f2(x) =
∑
r∈R2

βr
∏

t∈I2(r)

(1− xt),

their product f1 · f2 is also a W-DNF polynomial over Dλ, given by:

(f1 · f2)(x) =
∑

(r,r′)∈R1×R2

βrβ
′
r

∏
t∈I1(r)∪I2(r′)

(1− xt)

Proof. To see this, observe that

f1(x)f1(x) =∑
(r,r′)∈R1×R2

βrβ
′
r

∏
t∈I1(r)∩I2(r′)

(1− xt)2
∏

t∈I1(r)4I2(r′)

(1− xt)

where 4 is the symmetric set difference. On the other hand, as (1 − xt) ∈ {0, 1}, we have that

(1− xt)2 = (1− xt), and the lemma follows.

Hence, if ρke(x,λ) is a W-DNF polynomial, by (4.27) and Lemma 4.2.6, so is ρk+1
e (x,λ).

Hence, all load powers are W-DNF polynomials. Expectations of W-DNF polynomials

have a remarkable property:

Lemma 4.2.7. Let f : Dλ → R be a W-DNF polynomial, and let x ∈ D be a random vector of

independent Bernoulli coordinates parameterized by y ∈ D̃. Then Ey[f(x)] = f(y), where f(y) is

the evaluation of the W-DNF polynomial representing f over the real vector y.
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Proof. As f is W-DNF, it can be written as

f(x) =
∑
s∈S

βs
∏
t∈I(s)

(1− xt)

for appropriate S, and appropriate βs, I(s), where s ∈ S. Hence,

Ey[f(x)] =
∑
s∈S

βsEy

 ∏
t∈I(s)

(1− xt)


=
∑
s∈S

βs
∏
t∈I(s)

(1− Ey[xt]), by independence

=
∑
s∈S

βs
∏
t∈I(s)

(1− yt).

Lemma 4.2.7 states that, to compute the expectation of a W-DNF polynomial f over

i.i.d. Bernoulli variables with expectations y, it suffices to evaluate f over input y. Expectations

computed this way therefore do not require sampling.

We leverage this property to approximate ∇G(y) by taking the Taylor expansion of the

cost functions Ce at each edge e ∈ E. This allows us to write Ce as a power series w.r.t. ρke , k ≥ 1;

from Lemmas 4.2.5 and 4.2.7, we can compute the expectation of this series in a closed form. In

particular, by expanding the series and rearranging terms it is easy to show the following lemma:

Lemma 4.2.8. Consider a cost function Ce : [0, 1) → R+ which satisfies Assumption 1 and for

which the Taylor expansion exists at some ρ∗ ∈ [0, 1). Then, for x ∈ D a random Bernoulli vector

parameterized by y ∈ D̃,

∂G(y)

∂yvi
≈
∑
e∈E

L∑
k=1

α(k)
e

[
ρke
(
[y]−(v,i),λ

)
−ρke

(
[y]+(v,i),λ

)]
(4.29)

where, α(k)
e =

∑L
j=k

(−1)j−k(jk)
j! C

(j)
e (ρ∗)(ρ∗)j−k, for k = 0, 1, · · · , L, and the error of the ap-

proximation is: 1
(L+1)!

∑
e∈E C

(L+1)
e (ρ′)

[
E[y]−(v,i)

[(ρe(x,λ) − ρ∗)L+1] − E[y]+(v,i)
[(ρe(x,λ) −

ρ∗)L+1]
]
,where ρ′ ∈ [ρ∗, ρ].

Proof. The Taylor expansion of Ce at ρ∗ is given by:

Ce(ρ) = Ce(ρ
∗) +

L∑
k=1

1

k!
C(k)
e (ρ∗)(ρ− ρ∗)k+

+
1

(L+ 1)!
C(L+1)
e (ρ′)(ρ− ρ∗)L+1,
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where ρ′ ∈ [ρ∗, ρ] and C(k)
e is the k-th order derivative of Ce. By expanding this polynomial and

reorganizing the terms, we get

Ce(ρ) =
L∑
k=0

α(k)
e ρk +

1

(L+ 1)!
C(L+1)
e (ρ′)(ρ− ρ∗)L+1,

where

α
(k)
e =

∑L
j=k

(−1)j−k(jk)
j! C

(j)
e (ρ∗)(ρ∗)j−k,

for k = 0, 1, · · · , L. Consider now the L-th order Taylor approximation of Ce, given by

Ĉe(ρ) =
L∑
k=0

α(k)
e ρk.

Clearly, this is an estimator of Ce, with an error of the order |Ce(ρ) − Ĉe(ρ)| = o
(
(ρ− ρ∗)L

)
.

Thus, for x ∈ D a random Bernoulli vector parameterized by y ∈ D̃,

Ey[Ce(ρe(x,λ))] ≈ Ey[Ĉe(ρe(x,λ))] =
L∑
k=0

α(k)
e Ey[ρke(x,λ)] (4.30)

On the other hand, for all v ∈ V and i ∈ C:

∂G(y)

∂yvi

(4.24)
= Ey[F (x)|xvi = 1]− Ey[F (x)|xvi = 0]

(4.18a)
= Ey[C(x)|xvi = 0]− Ey[C(x)|xvi = 1]

(4.12a),(4.30)
≈

∑
e∈E

L∑
k=1

α(k)
e

(
Ey[ρke(x,λ)|xvi = 0]

− Ey[ρke(x,λ)|xvi = 1]
)
,

(4.31)

where the error of the approximation is given by

1

(L+ 1)!

∑
e∈E

C(L+1)
e (ρ′)

[
Ey[(ρe(x,λ)− ρ∗)L+1|xvi = 0]

− Ey[(ρe(x,λ)− ρ∗)L+1|xvi = 1]
]

The lemma thus follows from Lemmas 4.2.5 and 4.2.7.

Estimator (4.29) is deterministic: no random sampling is required. Moreover, Taylor’s

theorem allows us to characterize the error (i.e., the bias) of this estimate. We use this to characterize

the final fractional solution y produced by Alg. 7:

82



CHAPTER 4. DESIGN OF KELLY CACHE NETWORKS VIA SUBMODULAR MAXIMIZATION

Theorem 4.2.9. Assume that all Ce, e ∈ E, satisfy Assumption 1, are L + 1-differentiable, and

that all their L + 1 derivatives are bounded by W ≥ 0. Then, consider Alg. 7, in which ∇G(yk)

is estimated via the Taylor estimator (4.29), where each edge cost function is approximated at

ρ∗e = Eyk [ρe(x,λ)] = ρe(yk,λ). Then,

G(yK) ≥ (1− 1
e )G(y∗)− 2DB − P

2K , (4.32)

where K = 1
γ is the number of iterations, y∗ is an optimal solution to (4.23), D = maxy∈D̃ ‖y‖2 ≤

|V | ·max
v∈V

cv, is the diameter of D̃, B ≤ W |E|
(L+1)! is the bias of the estimator (4.29), and P = 2C(x0),

is a Lipschitz constant of∇G.

Proof. We begin by bounding the bias of estimator (4.31). Indeed, given a set of continuous

functions {C(u,v}(u,v)∈E where their first L+ 1 derivatives within their operating regime, [0, 1), are

upperbounded by a finite constant, W , the bias of estimator z ≡ [zvi]v∈V,i∈C , where zvi is defined by

(4.29), is given by

B ≡ ||z − OG(y)||2

= ||
∑
e∈E

1

(L+ 1)!
C(L+1)
e (ρ′e)(ρe − ρ∗e)L+1||2, (4.33)

where ρ′e ∈ [ρ∗e, ρe]. To compute the bias, we note that ρe, ρ∗e ∈ [0, 1]. Specifically, we assume

ρe, ρ
∗
e ∈ [0, 1). Hence, |ρe − ρ∗e| ≤ 1, and C(L+1)

e (ρ′e) ≤ max{C(L+1)
e (ρe), C

(L+1)
e (ρ∗e)} <∞. In

particular, let W = maxe∈E C
(L+1)
e (ρ′e). Then, it is easy to compute the following upper bound on

the bias of z:

B ≤ W |E|
(L+ 1)!

. (4.34)

In addition, note that G is linear in yvi, and hence [40]:

∂G

∂yvi
= E[F (x)|xvi = 1]− E[F (x)|xvi = 0]

= E[C(x)|xvi = 0]− E[C(x)|xvi = 1] ≥ 0,

(4.35)

which is ≥ 0 due to monotonicity of F (x). It is easy to verify that ∂
2G
∂y2vi

= 0. For (v1, i1) 6= (v2, i2),

we can compute the second derivative of G [40] as given by

∂2G

∂yv1i1∂yv2i2
= E[C(x)|xv1i1 = 1, xv2i2 = 0]

+ E[C(x)|xv1i1 = 0, xv2i2 = 1]

− E[C(x)|xv1i1 = 1, xv2i2 = 1]

− E[C(x)|xv1i1 = 0, xv2i2 = 0] ≤ 0,
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which is ≤ 0 due to the supermodularity of C(x). Hence, G(y) is component-wise concave [40] .

In addition, it is easy to see that for y ∈ D̃, |G(y)|, ||OG(y)||, and ||O2G(y)|| are bounded

by C(x0), C(x0)|C||V |, and 2C(x0)(|C||V |)2, respectively. Consequently, OG is P -Lipschitz

continuous, with P = 2C(x0)(|C||V |)2.

In the kth iteration of the Continuous Greedy algorithm, let m∗ = m∗(yk) := (y∗ ∨ (yk +

y0)) − yk = (y∗ − yk) ∨ y0 ≥ y0, where x ∨ y := (max{xi, yi})i. Since m∗ ≤ y∗ and D is

closed-down, m∗ ∈ D. Due to monotonicity of G, it follows

G(yk + m∗) ≥ G(y∗). (4.36)

We introduce univariate auxiliary function gy,m(ξ) := G(y + ξm), ξ ∈ [0, 1],m ∈ D̃.

Since G(y) is component-wise concave, then, gy,m(ξ) is concave in [0, 1]. In addition, since

gyk,m∗(ξ) = G(yk + ξm∗) is concave for ξ ∈ [0, 1], it follows

gyk,m∗(1)− gyk,m∗(0) = G(yk + m∗)−G(yk)

≤ dgyk,m(0)

dξ
× 1 = 〈m∗,OG(yk)〉. (4.37)

Now let mk be the vector chosen by Algorithm 7 in the kth iteration. We have

〈mk, z(yk)〉 ≥ 〈m∗, z(yk)〉. (4.38)

For the LHS, we have

〈mk, z〉 = 〈mk,OG(yk)〉+ 〈mk, z− OG(yk)〉
(i)

≤ 〈mk,OG(yk)〉+ ||mk||2 · |z− OG(yk)||2 (4.39)

≤ 〈mk,OG(yk)〉+DB.

where D = maxm∈D̃ ‖m‖2 ≤ |V | ·max
v∈V

cv, is the upperbound on the diameter of D̃, B is as defined

in (4.34), and (i) follows from Cauchy-Schwarz inequality. Similarly, we have for the RHS of that

(4.38)

〈m∗, z(yk)〉 ≥ 〈m∗,OG(yk)〉 −DB. (4.40)

It follows

〈mk,OG(yk)〉+ 2DB ≥ 〈m∗,OG(yk)〉
(a)

≥ G(yk + m∗)−G(yk)
(b)

≥ G(y∗)−G(yk), (4.41)
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where (a) follows from (4.37), and (b) follows from (4.36).

Using the P -Lipschitz continuity property of dgyk,mk (ξ)

dξ (due to P -Lipschitz continuity of

OG), it is straightforward to see that

−
Pγ2

k

2
≤ gyk,mk

(γk)− gyk,mk
(0)− γk ·

dgyk,mk
(0)

dξ

= G(yk + γkmk)−G(yk)− γk <mk,OG(yk) >, (4.42)

hence,

G(yk+1)−G(yk) ≥ γk〈mk,OG(yk)〉 −
Pγ2

k

2
(4.43)

≥ γk〈mk,OG(yk)〉 −
Pγ2

k

2
(c)

≥ γk(G(y∗)−G(yk))− 2γkDB −
Pγ2

k

2
, (4.44)

where (c) follows from (4.41), respectively. By rearranging the terms and letting k = K − 1, we

have

G(yK)−G(y∗) ≥
K−1∏
j=0

(1− γj)(G(y0)−G(y∗))− 2DB
K−1∑
j=0

γj −
P

2

K−1∑
j=0

γ2
j

(e)

≥ (G(y0)−G(y∗)) exp{−
K−1∑
j=0

γj} − 2DB

K−1∑
j=0

γj −
P

2

K−1∑
j=0

γ2
j ,

where (e) is true since 1− x ≤ e−x,∀x ≥ 0, and G(y0) ≤ G(y∗) holds due to the greedy nature of

Algorithm 7 and monotonicity of G. In addition, Algorithm 7 ensures
∑K−1

j=0 γj = 1. It follows

G(yK)− (1− 1

e
)G(y∗) ≥ e−1G(y0)− 2DB − P

2

K−1∑
j=0

γ2
j . (4.45)

This result holds for general stepsizes 0 < γj ≤ 1. The RHS of (4.45) is indeed maximized

when γj = 1
K , which is the assumed case in Algorithm 7. In addition, we have y0 = 0, and hence,

G(y0) = 0. Therefore, we have

G(yK)− (1− 1

e
)G(y∗) ≥ −2DB − P

2K
. (4.46)
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The theorem immediately implies that we can replace (4.29) as an estimator in Alg. 7,

and attain an approximation arbitrarily close to 1− 1/e. Note that the computational complexity of

the estimator depends on the number of terms in the W-DNF form; this, in turn, depends on L. In

practice, as shown in Section 4.4, this estimator significantly outperforms sampling in both execution

time and caching gain attained.

Estimation via Power Series. For arbitrary L + 1-differentiable cost functions Ce, the estimator

(4.29) can be leveraged by replacingCe with its Taylor expansion. In the case of queue-dependent cost

functions, as described in Example 4 of Section 4.1.2, the power-series (4.17) can be used instead. For

example, the expected queue size (Example 1, Sec. 4.1.2), is given by Ce(ρe) = ρe
1−ρe =

∑∞
k=1 ρ

k
e .

In contrast to the Taylor expansion, this power series does not depend on a point ρ∗e around which the

function Ce is approximated.

4.2.3 The Role of Sparsity in Efficient Computations

The crux of our proposed method is the gradient estimator (4.35), which depends on

computations of products and summations of W-DNF functions (see Lemmas 4.2.5 and 4.2.8). Note

that the load over each edge ρe in (4.27), is a summation over only a subset of requests (defined in

(4.28a)). Moreover, for each request the load depends only on a subset of variables (4.28b). In other

words, the support of each load function ρe is sparse, as it only depends on a subset of variables, i.e.,

∪r∈ReIe(r). Note that the size of each set Ie(r) directly depends on the length of the path pr; in

practice, every path only contains a subset of edges in the graph.

Moreover, the support for the k-th powers of these load functions, is the union over the sets

∪i∈[k]Ie(ri) for all sets ri ∈ Re, due to Lemma 4.2.6. Therefore, the supports of the load functions

are increased with a factor of k. Given that in practice taking powers of 2 is sufficient (see our

experiments in Sec. 4.4), we see that the powers of ρe also have sparse supports. Therefore, the

gradient estimations in (4.29) can be computed efficiently.

4.3 Beyond M/M/1 queues

As discussed in Section 4.1.1, the classes of M/M/1 queues for which the supermodularity

of the cost functions arises are quite broad, and include FIFO, LIFO, and processor sharing queues.

In this section, we discuss how our results extend to even broader families of queuing networks.

Chapter 3 of Kelly [146] provides a general framework for a set of queues for which service times
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are exponentially distributed. A large class of networks can be modeled by this framework, including

networks of M/M/k queues; all such networks maintain the property that steady-state distributions

have a product form. This allows us to extend our results to M/M/k queues for two cost functions Ce:

Lemma 4.3.1. For a network of M/M/k queues, both the queuing probability2 and the expected

queue size are non-increasing and supermodular over sets {supp(x) : x ∈ Dλ}.

Proof. For an arbitrary network of M/M/k queues, the traffic load on queue (u, v) ∈ E is given as

a(u,v)(x) =

∑
r∈R:(v,u)∈pr

λr
kpr (v)∏
k′=1

(1− xpr
k′ i

r)

kµ(u,v)
, (4.47)

which is similar to that of M/M/1 queues, but normalized by the number of servers, k. Hence,

a(u,v)(x) is submodular in x. For an M/M/k queue, the probability that an arriving packet finds all

servers busy and will be forced to wait in queue is given by Erlang C formula [168], which follows

PQ(u,v)(x) =
b(u,v)(x)(ka(u,v)(x))k

k!(1− a(u,v)(x))
, (4.48)

where

b(u,v)(x) =

[
k−1∑
n=0

(ka(u,v)(x))n

n!
+

(ka(u,v)(x))k

k!(1− a(u,v)(x))

]−1

, (4.49)

is the normalizing factor. In addition, the expected number of packets waiting for or under transmis-

sion is given by

E[n(u,v)(x)] = ka(u,v)(x) +
a(u,v)(x)PQ(u,v)(x)

1− a(u,v)(x)
. (4.50)

Lee and Cohen [170] show that PQ(u,v)(x) and E[n(u,v)(x)] are strictly increasing and

convex in a(u,v)(x), for a(u,v)(x) ∈ [0, 1). In addition, a more direct proof of convexity of

E[n(u,v)(x)] was shown by Grassmann in [171]. Hence, Both P (x) :=
∑

(u,v)∈E P
Q
(u,v)(x) and

N(x) :=
∑

(u,v)∈E E[n(u,v)(x)] are increasing and convex. Due to Theorem 4.2.1, we note that both

functions are non-increasing and supermodular in x, and the proof is complete.

Product-form steady-state distributions arise also in settings where service times are not

exponentially distributed. A large class of quasi-reversible queues, named symmetric queues exhibit

this property (c.f. Section 3.3 of [146] and Chapter 10 of [148]). In the following lemma we leverage

the product form of symmetric queues to extend our results to M/D/1 symmetric queues [168]:
2This is given by the so-called Erlang C formula [168].
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Figure 4.3: A simple network with finite-capacity queues.

Table 4.1: Results of ρu,v(x)’s for different caching configurations.

[x11, x21] ρ3,2 ρ2,1

[0, 0] λ
µ3,2

λ(1−pL3,2)
µ2,1

[1, 0] 0 0

[0, 1] 0 λ
µ2,1

[1, 1] 0 0

Lemma 4.3.2. For a network of M/D/1 symmetric queues, the expected queue size is non-increasing

and supermodular over sets {supp(x) : x ∈ Dλ}.

Proof. Let ρ(u,v)(x) be the traffic load on queue (u, v) ∈ E, as defined by (4.5). It can be shown

that the average number of packets in queue (u, v) ∈ E is of form [168]

E[n(u,v)(x)] = ρ(u,v)(x) +
ρ2

(u,v)(x)

2(1− ρ(u,v)(x))
. (4.51)

It is easy to see that this function is strictly increasing and convex in ρ(u,v)(x) for ρ(u,v)(x) ∈ [0, 1).

Due to Theorem 4.2.1, N(x) :=
∑

(u,v)∈E E[n(u,v)(x)] is non-increasing and supermodular in x,

and the proof is complete.

Again, Lemma 4.3.2 and Little’s theorem imply that this property also extends to network

delays. It is worth noting that conclusions similar to these in Lemmas 4.3.1 and 4.3.2 are not possible

for all general queues with product form distributions. In particular, we prove the following negative

result:

Lemma 4.3.3. There exists a network of M/M/1/k queues, containing a queue e, for which no

strictly monotone function Ce of the load ρe at a queue e is non-increasing and supermodular over

sets {supp(x) : x ∈ Dλ}. In particular, the expected size of queue e is neither monotone nor

supermodular.
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Proof. Consider the network of M/M/1/k queues in Fig. 4.3, where node 1 is requesting content 1

from node 3, according to a Poisson process with rate λ. For simplicity, we only consider the traffic

for content 1. For queues (2, 1) and (3, 2), it is easy to verify that the probability of packet drop at

queues (u, v) ∈ {(2, 1), (3, 2)} is given by

pL(u,v)(ρ(u,v)) =
ρu,v(x)k(1− ρ(u,v)(x))

1− ρ(u,v)(x)k+1
, (4.52)

where ρ(u,v)(x) is the traffic load on queue (u, v), and it can be computed for(2, 1) and (3, 2) as

follows:

ρ(2,1)(x11, x21) =
λ(1− x11)(1− pL(3,2))

µ(2,1)
, (4.53)

ρ(3,2)(x11, x21) =
λ(1− x11)(1− x21)

µ(3,2)
. (4.54)

Using the results reported in Table 4.1, it is easy to verify that ρ’s are not monotone in x.

Hence, no strictly monotone function of ρ’s are monotone in x. In addition, it can be verified that

ρ’s are neither submodular, nor supermodular in x. To show this, let sets A = ∅, and B = {(1, 1)},
correspond to caching configurations [0, 0] and [1, 0], respectively. Note that A ⊂ B, and (2, 1) /∈ B.

Since ρ(3,2)(A∪{(2, 1)})−ρ(3,2)(A) = − λ
µ(3,2)

� 0 = ρ(3,2)(B∪{(2, 1)})−ρ(3,2)(B), then ρ(3,2)

is not submodular. Consequently, no strictly monotone function of ρ(3,2) is submodular. Similarly,

as ρ(2,1)(A ∪ {(2, 1)}) − ρ(2,1)(A) =
λpL

(3,2)

µ(2,1)

 0 = ρ(2,1)(B ∪ {(2, 1)}) − ρ(2,1)(B), ρ(2,1) is not

supermodular. Thus, no strictly monotone function of ρ(2,1) is supermodular.

4.4 Experiments

Networks. We execute Algorithms 6 and 7 over 9 network topologies, summarized in Table 4.2.

Graphs ER and ER-20Q are the same 100-node Erdős-Rényi graph with parameter p = 0.1. Graphs

HC and HC-20Q are the same hypercube graph with 128 nodes, and graph star is a star graph

with 100 nodes. The graph path is the topology shown in Fig. 4.2. The last 3 topologies, namely,

dtelekom, geant, and abilene represent the Deutsche Telekom, GEANT, and Abilene back-

bone networks, respectively. The latter is also shown in Fig. 4.4.

Experimental Setup. For path and abilene, we set demands, storage capacities, and service

rates as illustrated in Figures 4.2 and 4.4, respectively. Both of these settings induce an approximation

ratio close to 1/2 for greedy. For all remaining topologies, we consider a catalog of size |C| objects;

for each object, we select 1 node uniformly at random (u.a.r.) from V to serve as the designated
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Table 4.2: Graph Topologies and Experiment Parameters.

Graph |V | |E| |C| |R| |Q| cv FPL(xRND) FUNI(xRND)

ER 100 1042300 1K 4 3 2.75 2.98

ER-20Q 100 1042300 1K 20 3 3.1 2.88

HC 128 896 300 1K 4 3 2.25 5.23

HC-20Q 128 896 300 1K 20 3 2.52 5.99

star 100 198 300 1K 4 3 6.08 8.3

path 4 3 2 2 1 1 1.2 1.2

dtelekom68 546 300 1K 4 3 2.57 3.66

abilene 11 28 4 4 2 1/2 4.39 4.39

geant 22 66 10 40 4 2 19.68 17.22
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Figure 4.4: The abilene topology. We consider a catalog size of |C| = 4 and 4 requests (|R| = 4).
Requests originate from |Q| = 2 nodes, b and i. Three edges have a high service rate M � 1, and
the rest have a low service rate 2 + ε. Only nodes a, g, and h can cache items, and have capacities 2,
1, and 1, respectively. We set M = 200 and ε = 0.05 in our experiments. Greedy is 0.5-approximate
in this instance.

server for this object. To induce traffic overlaps, we also select |Q| nodes u.a.r. that serve as sources

for requests; all requests originate from these sources. All caches are set to the same storage capacity,

i.e., cv = c for all v ∈ V .

We generate a set of |R| possible types of requests. For each request type r ∈ R, λr = 1

request per second, and path pr is generated by selecting a source among the |Q| sources u.a.r., and

routing towards the designated server of object ir using a shortest path algorithm. We consider two

ways of selecting objects ir ∈ C: in the uniform regime, ir is selected u.a.r. from the catalog C; in
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(a) Power-law demand
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Figure 4.5: Caching gains for different topologies and different arrival distributions, normalized
by the gains corresponding to RND, reported in Table. 4.2. Greedy performs comparatively well.
However, it attains sub-optimal solutions for path and abilene; these solutions are worse than
RND. CG-RS500 has a poor performance compared to other variations of the continuous-greedy
algorithm.

ER ER-20Q star HC HC-20Q path dtelekom abilene geant
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Figure 4.6: Running time for different topologies and power-law arrival distribution, in seconds.
CG-RS500 is slower than power series estimation CG-PS1 and CGT, sometimes exceeding CG-PS2
as well.

the power-law regime, ir is selected from the catalog C via a power law distribution with exponent

1.2. All the parameter values, e.g., catalog size |C|, number of requests |R|, number of query sources
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|Q|, and caching capacities cv are presented in Table 4.2. We evaluate the caching gain F (x) with

queue size as the cost function, as defined in (4.13).

We construct heterogeneous service rates as follows. Every queue service rate is either

set to a low value µe = µlow or a high value µe = µhigh, for all e ∈ E. We select µlow and µhigh

as follows. Given the demands r ∈ R and the corresponding arrival rates λr, we compute the

highest load under no caching (x = 0), i.e., we find λmax = maxe∈E
∑

r:e∈pr λ
r. We then set

µlow = λmax × 1.05 and µhigh = λmax × 200. We set the service rate to µlow for all congested

edges, i.e., edges e s.t. λe = λmax. We set the service rate for each remaining edge e ∈ E to µlow

independently with probability 0.7, and to µhigh otherwise. Note that, as a result 0 ∈ Dλ = D, i.e.,

the system is stable even in the absence of caching and, on average, 30 percent of the edges have a

high service rate.

Placement Algorithms. We implement several placement algorithms: (a) Greedy, i.e., the greedy

algorithm (Alg. 6), (b) Continuous-Greedy with Random Sampling (CG-RS), i.e., Algorithm 7 with a

gradient estimator based on sampling, as described in Sec. 4.2.1, (c) Continuous-Greedy with Taylor

approximation (CGT), i.e., Algorithm 7 with a gradient estimator based on the Taylor expansion,

as described in Sec. 4.2.2, and (d) Continuous-Greedy with Power Series approximation (CG-PS),

i.e., Algorithm 7 with a gradient estimator based on the power series expansion, described also in

Sec. 4.2.2. In the case of CG-RS, we collect 500 samples, i.e., T = 500. In the case of CG-PS we

tried the first and second order expansions of the power series as CG-PS1 and CG-PS2, respectively.

In the case of CGT, we tried the first-order expansion (L = 1). In both cases, subsequent to the

execution of Alg. 7 we produce an integral solution in D by rounding via the swap rounding method

[169]. All continuous-greedy algorithms use γ = 0.001. We also implement a random selection

algorithm (RND), which caches cv items at each node v ∈ V , selected uniformly at random, from

the catalog C. We repeat RND 10 times, and report the average running time and caching gain.

4.4.1 Caching Gain Across Different Topologies.

The caching gain F (x) for x generated by different placement algorithms, is shown for

power-law arrival distribution and uniform arrival distribution in Figures 4.5a and 4.5b, respectively.

The values are normalized by the gains obtained by RND, reported in Table 4.2. Also, the running

times of the algorithms for power-law arrival distribution are reported in Fig. 4.6. As we see in

Fig. 4.5, Greedy is comparable to other algorithms in most topologies. However, for topologies

path and abilene Greedy obtains a sub-optimal solution, in comparison to the continuous-greedy
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Figure 4.7: Caching gain vs. M . As the discrepancy between the service rate of low-bandwidth and
high-bandwidth links increases, the performance of Greedy deteriorates.

algorithm. In fact, for path and abilene Greedy performs even worse than RND. This is precisely

because it comes with a worse guarantee (1/2) over these topologies. Note that the 500 samples

in CG-RS500 are significantly lower than the value, stated in Theorem 4.2.4, needed to attain the

theoretical guarantees of the continuous-greedy algorithm. This is quadratic in |V ||C| (∼ 108 for,

e.g., ER). Because of this, in Fig. 4.5, we see that the continuous-greedy algorithms with gradient

estimators based on Taylor and Power series expansion, i.e., CG-PS1, CG-PS2, and CGT outperform

CG-RS500 in most topologies. Despite this, from Fig. 4.6, we see that CG-RS500 runs 100 times

slower than the continuous-greedy algorithms with first-order gradient estimators, i.e., CG-PS1 and

CGT.

4.4.2 Varying Service Rates.

For topologies path and abilene, the approximation ratio of Greedy is ≈ 0.5. This

ratio is a function of service rate of the high-bandwidth link M. In this experiment, we explore

the effect of varying M on the performance of the algorithms in more detail. We plot the caching

gain obtained by different algorithms for path and abilene topologies, using different values of

M ∈ {Mmin, 10, 20, 200}, where Mmin is the value that puts the system on the brink of instability,

i.e., 1 and 2 + ε for path and abilene, respectively. Thus, we gradually increase the discrepancy

between the service rate of low-bandwidth and high-bandwidth links. The corresponding caching

gains are plotted in Fig. 4.7, as a function of M . We see that as M increases the gain attained

by Greedy worsens in both topologies: when M = Mmin Greedy matches the performance of the
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Figure 4.8: Caching gain vs. arrival rate. As the arrival rate increases caching gains get larger.

continuous-greedy algorithms, in both cases. However, for higher values of M it is beaten not only

by all variations of the continuous-greedy algorithm, but by RND as well.

4.4.3 Effect of Congestion on Caching Gain.

In this experiment, we study the effect of varying arrival rates λr on caching gain F . We

report results only for the dtelekom and ER topologies and power-law arrival distribution. We

obtain the cache placements x using the parameters presented in Table 4.2 and different arrival

rates: λr ∈ {0.65, 0.72, 0.81, 0.9, 1.0}, for r ∈ R. Fig. 4.8 shows the caching gain attained by the

placement algorithms as a function of arrival rates. We observe that as we increase the arrival rates,

the caching gain attained by almost all algorithms, except RND, increases significantly. Moreover,

CG-PS1, CG-PS2, CGT, and Greedy have a similar performance, while CG-RS500 achieves lower

caching gains.

4.4.4 Varying Caching Capacity.

In this experiment, we study the effect of increasing cache capacity cv on the acquired

caching gains. Again, we report the results only for the dtelekom and ER topologies and power-law

arrival distribution. We evaluate the caching gain obtained by different placement algorithms using

the parameters of Table 4.2 and different caching capacities: cv ∈ {1, 3, 10, 30} for v ∈ V. The

caching gain is plotted in Fig. 4.9. As we see, in all cases the obtained gain increases, as we increase
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Figure 4.9: Caching gain vs. cache capacity. As caching capacities increase, caching gains rise.

the caching capacities. This is expected: caching more items reduces traffic and delay, increasing the

gain.

4.5 Conclusion and Future Work

Our analysis suggests feasible object placements targeting many design objectives of

interest, including system size and delay, can be determined using combinatorial techniques. Our

work leaves open problems relating to stability. This includes the characterization of the stability

region of arrival rates Λ = ∪x∈DΛ(x). It is not clear whether determining membership in this set (or,

equivalently, given λ, determining whether there exists a x ∈ D under which the system is stable)

is NP-hard or not, and whether this region can be somehow approximated. Our recent work [172]

tackles this challenge by jointly optimizing the cache placements and the arrival rates λr for requests.

In particular, we maximize the sum of utility functions of the rates, subject to the stability of the

network and cache constraints (4.1); however, this results in maximizing a concave function subject

to non-convex and non-concave constraints. We use a variant of the barrier method, which moves

the hard constraints to the objective as a penalty for violating the constraints.

Moreover, we propose a novel Taylor-based gradient estimator (c.f. Sec. 4.2.2), which

is the crux of our efficient algorithm. Note that this method can be applied, more generally, to

submodular maximization problems where the objective is a composition of a differentiable function

with W-DNF polynomials. We explore this direction in our recent work [173]; in particular, we

95



CHAPTER 4. DESIGN OF KELLY CACHE NETWORKS VIA SUBMODULAR MAXIMIZATION

show that a similar method for estimating the gradients can be adopted for a variety of submodular

maximization applications, i.e., influence maximization, document summarization, and facility

location. We obtain a theorem similar to Theorem 4.2.9, where the estimator bias B in (4.32) is

specifically bounded w.r.t. Taylor expansion degree L. In fact, one of the weaknesses of the current

result in Theorem 4.2.9 is that it is not clear whether the bias term goes to zero as L goes to infinity.

Our work leaves the exact characterization of approximable objectives for certain classes

of queues, including M/M/1/k queues, open; providing guarantees for M/M/1/k queues, that are not

amenable to an analysis via submodular maximization, is also an important open problem. Finally, all

algorithms presented in this chapter are offline: identifying how to determine placements in an online,

distributed fashion, in a manner that attains a design objective (as in [7, 167]), or even stabilizes the

system (as in [151]), remains an important open problem.
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Chapter 5

Massively Distributed Graph Distances

Graphs are ubiquitous combinatorial objects, representing real-world phenomena from

social and information networks to technological, biological, chemical, and brain networks. Graph

distance (or similarity) scores find applications in varied fields, such as image processing [175],

chemistry [176, 177], and social network analysis [178, 179]. Graph distances are used in several

graph mining tasks, including anomaly detection [180, 181], nearest neighbor and similarity search

[182, 183, 184, 180, 185], pattern recognition [182, 185], transfer learning [186], and clustering [1],

to name a few.

Distance scores that are metrics–and satisfy the triangle inequality property–exhibit signifi-

cant computational advantages. From a theoretical standpoint, operations such as nearest-neighbor

search [187, 188, 189], outlier detection [190], clustering [191, 192, 193], and diameter computation

[194] can be computed or approximated efficiently over objects embedded in a metric space. Beyond

theoretical guarantees, in practice, metrics often significantly improve performance and/or quality

compared to non-metrics in a variety of tasks. For example, graph clustering algorithms are better at

detecting clusters over metric spaces. This is illustrated in Fig. 5.1 in the context of graph clustering.

Distances between synthetic graphs sampled from well-known random graph families are computed

using both metric and non-metric distances. Classification errors by seven hierarchical clustering

algorithms are significantly lower when using metrics rather than non-metrics. Metric graph distances

are therefore highly desirable.

Graph matching has a long history in machine learning and pattern recognition [195, 196,

175]. Given two graphs, the graph matching problem amounts to finding a node-to-node correspon-

dence (or mapping) that preserves edge relationships across two graphs. This relates to distance

computation, as the optimal mapping can be cast as the solution of a minimum distance computation
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Figure 5.1: Clustering experiment using metrics and non-metrics (from Bento and Ioannidis
[1]). The graphs with n = 50 nodes are sampled from six families (Barabasi Albert, Erdős-Rényi,
Regular Graph, Power Law Tree, Small World and Watts Strogatz). The authors compute distances
between them using nine different scores; only the last four (DSL1, DSL2, ORTHOP, and ORTHFR)
are metrics. Graphs are clustered using hierarchical agglomerative clustering [174] using Average,
Centroid, Complete, Median, Single, Ward, Weighted as a means of merging clusters. Colors
represent the fraction of misclassified graph pairs, with the minimal misclassification rate per distance
labeled explicitly. Metrics outperform other distance scores across all clustering methods. DSL1 and
DSL2 correspond to (5.4) for p = 1 and 2, respectively, with λ = 0.

problem. For example, graph matching is commonly formulated as a quadratic assignment problem

[175, 197, 198, 199], which is generally NP-hard [195]. There are many works solving this problem

approximately (see [175] for a thorough review). NetAlignMR [197] proposes and solves an integer

linear programming relaxation. For the same linear relaxation, NetAlignBP [200] uses a more

efficient belief propagation (BP) method. Natalie [199] proposes another integer linear programming

relaxation. A different approach via a graduated assignment was proposed by Gold and Rangarajan

[195]. IsoRank [201] finds a score matrix via a spectral algorithm. Closest to us, Lyzinski et al.

[202] propose both a convex and non-convex relaxation over the set of doubly stochastic matrices:

their convex relaxation is Eq. (5.2) with λ = 0 and p = 2, while the objective in the non-convex
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relaxation is the quadratic function trace((AP)>PB). Schellewald and Schnörr [203] propose a

semi-definite programming relaxation. Though highly efficient, these approaches generally do not

yield distances that are metrics (see [1]).

Well-known graph distances that are metrics include the so-called chemical [177] and the

Chartrand-Kubiki-Shultz (CKS) [204] distances. The chemical distance between two graphs GA and

GB with adjacency matrices A,B ∈ {0, 1}n×n, respectively, is defined as:

minP∈Pn ‖AP−PB‖2, (5.1)

where Pn is the set of permutation matrices, and ‖·‖2 is the p = 2 (a.k.a. Frobenius) norm. Intuitively,

the solution to Prob. (5.1) counts the number of edges present in one graph but not the other, under

a node correspondence (mapping) captured by permutation matrix P. The CKS distance has the

same formulation, replacing the adjacency matrices with matrices comprising shortest path distances.

Unfortunately, both distances are computationally intractable [205].

To address this, Bento and Ioannidis [1] recently proposed a convex relaxation of these

distances, which attains tractability while also naturally incorporating node features. In a nutshell,

the authors define the distance between two n-node graphs GA and GB as the optimal value of the

problem:

min
P∈Wn

‖AP−PB‖p + λ · trace
(
P>DA,B

)
, (5.2)

whereWn is the set of doubly stochastic matrices, ‖ · ‖p is the entry-wise p-norm, DA,B ∈ Rn×n

denotes dissimilarities between the nodes of the two graphs, and λ ≥ 0 is a hyper-parameter.

The relaxation of the chemical distance defined by Prob. (5.2) has several advantages. First,

it is tractable, as it involves solving a convex optimization problem. Second, Bento and Ioannidis

show that the distance resulting from solving Prob. (5.2) is a metric and, in particular, satisfies the

triangle inequality. This yields the aforementioned benefits of metrics in downstream tasks such

as, e.g., graph clustering or nearest-neighbor search. Third, it incorporates node features via the

linear trace term. This has computational advantages (which we discuss in Section 5.1.6), but is also

important in practice: nodes in real-life graphs often contain such information (e.g., demographic

information of users in a social network, atom properties in a molecule, etc.). Finally, Prob. (5.4)

encompasses multiple p-norms and possible distance matrices DA,B , for which both the metric

property and convexity are maintained [1]. The ability to span different norms is also very important

in practice, as the right value of p can be data dependent (see Tables 5.2 and 5.3 in Sec. 5.5.3).
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Even though Prob. (5.2) is a convex optimization problem, the number of variables is

quadratic in the graph size n; this makes traditional optimization methods for solving (5.2) prohibitive

even for small n. Nevertheless, for p = 1, the problem can be solved in a distributed fashion via the

Alternating Directions Method of Multipliers (ADMM) [13], since its objective decomposes into

a sum of simpler objective functions. Unfortunately, it is not clear how to efficiently distribute the

solution for p > 1; this is precisely because, for p > 1, the objective of (5.2) cannot be written as a

sum of distinct terms. Our present work directly addresses this challenge: we propose a distributed

algorithm solving (5.2) for arbitrary p ≥ 1. Our solution combines ADMM with a distributed

proximal operator for arbitrary p-norms, which is both novel and of independent interest. Finally,

we demonstrate the applicability of our algorithm via massively distributed implementations over

OpenMP and Apache Spark, which we make publicly available.1 In summary, we make the following

contributions:

• We propose an ADMM-based distributed algorithm for solving (5.4) for all p ≥ 1. Our

solution for the case p > 1 uses a nested-ADMM (Alg. 8 and 9) in combination with a

distributed bisection algorithm (Alg. 10) as building blocks.

• We describe the algorithm’s parallel complexity in terms of the sparsity of graphsGA, GB, and

additional constraints we introduce in the problem. In particular, we bound message exchanges

in terms of these sparsity parameters.

• We implement our algorithm in OpenMP [43] and Spark [33]. Our publicly available imple-

mentation scales to hundreds of CPUs. Over a 448 CPU cluster, we attain speedups as much

as 153×.

The remainder of this chapter is organized as follows. We introduce graph distances in Sec. 5.1. We

review proximal operators along with consensus ADMM in Sec. 5.2. We present our main algorithm

and its complexity analysis in Sections 5.3 and 5.4, respectively. Finally, we describe our experiments

in Sec. 5.5. We conclude in Sec. 5.6.

5.1 Graph Distances

In this section, we briefly review the technical material necessary for understanding this

chapter. We start by introducing notations and basic definitions related to graphs and norms. We
1https://github.com/neu-spiral/GraphMatching
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then review chemical distances, metrics, and proximal operators in Sections 5.1.2, 5.1.3, and 5.2.1,

respectively. We finally review the consensus ADMM in Sec. 5.2.2.

Graphs. We represent a graph G(V, E) with node set V = [n] ≡ {1, . . . , n} and edge set E ⊆
[n] × [n] by its adjacency matrix, i.e., A = [aij ]i,j∈[n] ∈ {0, 1}n×n s.t. aij = 1 iff (i, j) ∈ E . A

graph is bipartite if its node set can be partitioned into two disjoint sets VL and VR such that no edges

exist within the same partition, i.e., E ⊆ VL × VR. We denote bipartite graphs by G(VL,VR, E).

Matrix Norms and Projections. Given a matrix A = [aij ]i,j∈[n] ∈ Rn×n and p ∈ R+, where

p ≥ 1, its entry-wise p-norm is ‖A‖p = (
∑n

i=1

∑n
j=1 |aij |p)1/p. We use ‖A‖0 to indicate the

number of non-zero elements (a.k.a. the size of the support) of A, i.e., ‖A‖0 ≡ |{(i, j) : aij 6=
0}| = | supp(A)|.Given a vector x ∈ Rn and an ordered set S ⊆ [n], we denote the projection of x

on a subset S of its coordinates by xS ∈ R|S|. Similarly, given a matrix A = [aij ]i,j∈[n] ∈ Rn×n

and a set S ⊆ [n] × [n], we define AS ∈ R|S| to be the projection of A on its coordinates in S;

that is, AS is the |S|-dimensional vector comprising the elements aij , (i, j) ∈ S. We denote by

Pn = {P ∈ {0, 1}n×n : P1 = 1,P>1 = 1} the set of permutation matrices and by Wn = {P ∈
[0, 1]n×n : P1 = 1,P>1 = 1} the set of doubly-stochastic matrices (i.e., the Birkhoff polytope).

5.1.1 The Weisfeiler-Lehman (WL) Algorithm

The WL algorithm [206] is a heuristic for solving the graph isomorphism problem. Note

that two isomorphic graphs must have the same degree distribution. More broadly, the distributions

of k-hop neighborhoods in the two graphs must also be identical. We use this algorithm to generate

the constraint set E in our experiments, in Sect. 5.5. To gain some intuition on the algorithm, note

that two isomorphic graphs must have the same degree distribution. More broadly, the distributions

of k-hop neighborhoods in the two graphs must also be identical. Building on this observation,

to test graph isomorphism, WL colors the nodes of a graph G(V,E) iteratively. At iteration

0, each node v ∈ V receives the same color c0(v) := 1. Colors at iteration k + 1 ∈ N are

defined recursively via ck+1(v) := hash
(
sort

(
clistkv

))
where hash is a perfect hash function, and

clistkv = [ck(u) : (u, v) ∈ E)] is a list containing the colors of all of v’s neighbors at iteration k.

Intuitively, two nodes in V share the same color after k iterations if their k-hop neighborhoods are

isomorphic. WL terminates when the partition of V induced by colors is stable from one iteration to

the next.
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5.1.2 Graph Distances.

A distance between two graphs can be defined naturally when they are labeled, i.e., the

correspondence between their nodes is known (see, e.g., [207, 179, 208]). Two classic examples are

the edit distance [209, 210] and the maximum common subgraph distance [211, 212]. Some recent

works focus on distances for labeled graphs that are easy to compute (e.g in linear or quadratic time)

[207, 179, 208] without maintaining the properties of a metric. We study the (harder) unlabeled

setting, in which the node correspondence between graphs is unknown. Examples of distances

in this setting include the chemical [177] and the Chartrand-Kubiki-Shultz (CKS) [204] distances,

while the edit and the maximum common subgraph distances can also be extended to the unlabeled

setting. All four [211, 212, 213, 214] are metrics and hard to compute, while existing heuristics (e.g.,

[215, 216]) do not satisfy the triangle inequality property. A simple approach to induce a metric

over unlabeled graphs is to embed them in a common metric space and then measure the distance

of these embeddings. Riesen et al. [217, 218] embed graphs into real vectors by computing their

edit distances to a set of prototype graphs. The same embedding is also used to compute a median

of graphs [219]. Other works [220, 221, 222] map graphs to spaces determined by their spectral

decomposition. Such approaches are not as discriminative as the metrics considered here [1], because

embeddings only summarize the graph structure.

Chemical Distance Let A,B ∈ {0, 1}n×n be the adjacency matrices of two graphs GA(V, EA) and

GB(V, EB). Graphs GA and GB are isomorphic if and only if there exists P ∈ Pn s.t. P>AP = B

or, equivalently, AP = PB. The chemical distance extends the latter relationship to capture

graph distances. The chemical distance between GA and GB is defined via Prob. (5.1). Intuitively,

Prob. (5.1) counts the number of edges present in one graph but not the other, under a node correspon-

dence (mapping) captured by permutation matrix P. Unfortunately, there is no poly-time algorithm

for solving (5.1) [205].
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5.1.3 Metrics.

Given a set Ω, a function d : Ω × Ω → [0,∞) is called a metric, and the pair (Ω, d) is

called a metric space, if d satisfies the following properties for all x, y, z ∈ Ω:

d(x, y) ≥ 0 (non-negativity) (5.3a)

d(x, y)=0 iff x=y (pos. definiteness) (5.3b)

d(x, y) = d(y, x) (symmetry) (5.3c)

d(x, y)≤d(x, z)+d(z, y) (triangle inequality) (5.3d)

A function d is called a pseudometric if it satisfies (5.3a), (5.3c), and (5.3d), but the positive

definiteness property (5.3b) is replaced by the (weaker) property:

d(x, x) = 0 for all x ∈ Ω. (5.3e)

If d is a pseudometric, then d(x, y) = 0 defines an equivalence relation x ∼d y over Ω. A

pseudometric is then a metric over Ω/∼d, the quotient space of ∼d. A d that satisfies (5.3a), (5.3b),

and (5.3d) but not the symmetry property (5.3c) is called a quasimetric. If d is a quasimetric, then its

symmetric extension d̄ : Ω× Ω→ R, defined as d̄(x, y) = d(x, y) + d(y, x), is a metric over Ω.

Metrics naturally arise in data mining tasks, including clustering [223, 174], nearest

neighbour search [187, 188, 189], and outlier detection [190]. Some of these tasks become tractable,

or admit formal guarantees, precisely when performed over a metric space. For example, finding the

nearest neighbor [187, 188, 189] or the diameter of a dataset [194] become polylogarithimic under

metric assumptions; similarly, approximation algorithms for clustering (which is NP-hard) rely on

metric assumptions, whose absence leads to a deterioration of known bounds [191]. Our focus on

metrics is motivated by these considerations.

5.1.4 Convex Relaxation

Bento and Ioannidis [1] introduce a tractable family of distances that generalizes the

chemical distance. The family can be expressed via convex optimization problems, that can be solved

via, e.g., barrier methods; nevertheless, the number of variables is quadratic in the graph size n,

which motivates our exploration of a distributed implementation.
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Formally, given the n-node graphs GA(V, EA) and GB(V, EB), where V = [n], Bento and

Ioannidis suggest computing the distance between graphs as the minimum of the following problem:

Minimize ‖AP−PB‖p + λ · trace
(
P>DA,B

)
, (5.4a)

subj. to: P ∈Wn, pij = 0 for all (i, j) /∈ Q, (5.4b)

where Q ⊆ [n] × [n] is a set of pairs constraining the support of P, DA,B = [dij ](i,j)∈[n]×[n] is a

matrix, s.t., dij measures the dissimilarity between some features of the nodes i ∈ V and j ∈ V, and

λ ≥ 0 is a tuning parameter.

Intuitively, Prob. (5.4) finds a stochastic mapping between nodes that minimizes edge

discrepancy, while also taking into account node feature distances as well as hard constraints. More

specifically, the doubly-stochastic matrix P can be interpreted as a stochastic mapping, where

pij ∈ [0, 1] shows the probability that node i in GA is mapped to node j in GB . Prob. (5.4) thus

seeks a stochastic mapping P that (a) minimizes the edge discrepancy between adjacency matrices,

captured by term ‖AP−PB‖, (b) penalizes mappings between nodes i inGA and node j inGB that

have distinct features, captured by linear term trace
(
P>DA,B

)
, and (c) further restricts mappings

to have support in Q.

We discuss examples illustrating different feature distance matrices DA,B and constraints

Q below, in Sec. 5.1.5. In short, node features can be incorporated in a soft manner, through the linear

term in objective (5.4a), or as hard constraints in Q (requiring, e.g., nodes with different categorical

features to never be mapped to each other).

Computing distances via Prob. (5.4) has several important advantages. First, under mild

conditions on DA,B and Q, the distance computed by Prob. (5.4) is a metric; this is proved by Bento

and Ioannidis [1]. Second, for arbitrary p-norms, (5.4) is a convex optimization problem. As a result,

a solution can be computed using standard methods [31]. Third, the linear term trace
(
P>DA,B

)
and

the constraints Q allow us to capture auxiliary information that often exists in practice, such as node

features or labels. Beyond this expressive power, both have significant computational advantages, as

we show in Sec. 5.5.

5.1.5 Constraints and Node Features

In practice, graph nodes are often endowed with features or attributes that we can leverage

in graph distance computations. Here, we explain how node features can be incorporated in Prob. (5.4)

via either the linear term or the constraint set Q.
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Node Features in Rd. Node attributes can be represented as, e.g, k-dimensional feature vectors

in Rd. Having access to such features, we can compute the elements of the dissimilarity matrix

DA,B = [dij ]i,j∈[n] by taking, e.g., the `2 (or other vector) norm of the difference between these

vectors: that is dij = ‖xi − xj‖2, where xi, xj ∈ Rk are the k-dimensional feature vectors for i in

GA and j in GB .

Node features can be exogenous, e.g., the demographic attributes of a user in a social

network, the atomic number of an atom in a molecule, etc. Alternatively, features can be endogenous,

i.e., computed directly from the adjacency matrix: these include, e.g., a node’s degree, it’s centrality,

its pagerank [224], node2vec representation [225, 226], or some other vector computed via graph

signal processing [227, 225]. Exogenous features are often available in practical settings, while

endogenous features can have computational advantages: we observe this in Sec. 5.5, where adding a

linear term often accelerates convergence but also produces higher quality solutions.

Categorical Features (Colors/Labels). Rather than including categorical node features as soft

constraints, via the trace penalty, such features can also be used to produce hard constraints, captured

by Q. Suppose that we are given a categorical node feature, referred to as a node’s color. We can

construct the constraint set Q by including only pairs (i, j) s.t. the nodes i and j across the two

graphs have the same color.

Colors can again be either exogenous or endogenous/structural. As examples of exogenous

colors, if the graph represents an organic molecule, the color can be the node’s atomic number;

then, constraint Q requires that identical atoms are mapped to each other across the two graphs. If

the graph represents a social network, colors can correspond to different demographic attributes,

(e.g., gender, age group, etc.) Structural/endogenous colors, on the other hand, can be categorical

variables capturing the local neighborhood structure around a node. These can be, e.g., node degrees,

the number of triangles that pass through a node, or some other discrete statistic generated from

a node’s k-hop neighborhood. One such statistic is the output of the so-called Weisfeiler-Lehman

(WL) algorithm [206], executed after k iterations (see Appendix 5.1.1).

Using categorical variables of the above nature to construct constraint set Q has several ad-

vantages. First, Bento and Ioannidis show that Prob. (5.4) remains a metric, even when incorporating

such constraints. Most importantly, introducing constraints can significantly decrease the number of

optimization variables and, hence, the computational complexity of Prob. (5.4). As we discuss in

Section 5.4, the sparsity of Q also dictates the communication complexity our parallel algorithm for

solving Prob. (5.4).
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5.1.6 Importance of p-norms and Linear Term

Given the size of both the input graphs, our goal is to produce a distributed algorithm for

solving Prob. (5.4). As we discuss in Sec. 5.3, the main challenge arises from presence of the p-norm

in combination with the linear term. One possible solution is to limit objective (5.4a) to the case

p = 1. This leads to an objective paralellizable via consensus ADMM. This, on the other hand,

is unsatisfactory, as the ideal norm may depend on the underlying graphs; we elaborate on this in

Sec. 5.5, where we see how inherent noise can effect our norm choice (see Sec. 5.5.3). Another

solution is to modify objective (5.4a), replacing ‖ · ‖p with ‖ · ‖pp. This has two significant drawbacks.

First, under this modification, the distance is no longer a metric; in particular, it fails to satisfy the

triangle inequality, which is a significant disadvantage for downstream applications, as mentioned

earlier. Second, from an optimization standpoint, it is important to keep the two terms in objective

(5.4a) balanced; this is harder in this case as ‖ · ‖pp is not absolutely homogeneous (in contrast to both

the trace and norms).

A final alternative is to remove the linear term altogether. In this case, minimizing ‖ · ‖p is

equivalent to minimizing ‖ · ‖pp. This annuls any benefits of incorporating features, both in terms

of modeling, e.g., exogenous node attributes, but also in terms of efficiency: as our experiments

demonstrate (see, e.g., Fig. 5.3 in Sec. 5.5.2), including the linear term can significantly accelerate

convergence.

5.2 Proximal Operators and Consensus ADMM

5.2.1 Proximal Operators.

The proximal operator of a lower semi-continuous function (see Sec. 2.1 for a formal

definition) f : Rd → R is defined as follows:

x∗ := arg min
x∈Rd

f(x) +
ρ

2
‖x− u‖22, (5.5)

where ρ > 0 and u ∈ Rd is a given point. Note that in case the function f is a characteristic function

χD(·) for a set D, the proximal operator is equivalent to projection on the set X . In that sense the

proximal operator is a generalization of projection on sets.

We use a bisection algorithm due to Liu and Ye [68] to compute the proximal operator of

p-norms. The original presentation of the algorithm was serial; we show (and exploit) in our work

the fact that the algorithm can be implemented in parallel via map-reduce operations. Beyond this,
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we also provide a convergence guarantee (Thm. 5.3.3), which was absent from their work. Sra [228]

extends Liu and Ye’s approach, proposing a bisection method for finding the proximal operators

of mixed `1,p norms. The same author also provides a proximal operator algorithm for mixed `p,q

norms in a follow-up work [229]. Proximal operators can be seen as generalizations of projection

operators [230]; in the case of norms, they are coupled to projections via Moreau’s decomposition

[231]. Exploiting the latter, some works solve the problem in the dual domain via projections on

the unit ball of the dual norm [230] or via gradient methods [232]. These methods are not readily

parallelizable.

5.2.2 Consensus ADMM

The Alternating Direction Method of Multipliers (ADMM) [83] is a convex optimization

algorithm, refer to Sec. 2.2.3 for more details. Here we focus on consensus ADMM [13], which is a

classic approach to distribute optimization problems; its applications are numerous [233, 234, 198,

235, 14, 236, 237]. For strongly convex problems, its optimally-tuned convergence rate is as fast

as that of the fastest first-order method [238]. Though we focus on the simplest setting, extensions

include asynchronous [14] and stochastic [237] versions, adaptive ways of updating parameter ρ

[236], and faster variants that solve subproblems inexactly [239]. Applying such optimizations to

our work is an interesting open question.

Consensus ADMM is an iterative optimization algorithm well-suited for solving convex

optimization problems in a distributed fashion. Problems amenable to a distributed solution via

consensus ADMM have a specific form: their objective can be written as a sum of functions, each

depending only on a few variables. Formally, consider the optimization problem:

Minimize F (x) =
∑N

i=1 Fi(xSi), (5.6)

where x ∈ Rn and each term Fi : R|Si| → R is convex and depends on a subset Si ⊆ [n] of the

coordinates of x. Prob. (5.6) can be re-written with N local variables xi ∈ R|Si|, i ∈ [N ] and a

single consensus variable z ∈ Rn as:

Minimize
∑N

i=1 Fi(xi) (5.7a)

subj. to: xi = zSi i = 1, . . . , N, (5.7b)

where zSi is the projection of z on the subset Si. The k-th iteration of consensus ADMM for (5.7) is
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Figure 5.2: A bipartite graph G(Vobj,Vvar, EG) showing the dependencies of the functions Fi on the
coordinates of the global consensus variable z, as well as communication pattern during parallelism.
Each node in the graph corresponds a processor. Processors in Vobj store Fi, xi, yi, i ∈ [N ], and
perform steps (5.8a) and (5.8c), while processors in Vvar store zi, i ∈ [n], and perform (5.8b).

as follows:

xk+1
i = arg min

xi
Fi(xi)+ ρ

2‖xi−z
k
Si+yki ‖22, ∀i ∈ [N ], (5.8a)

zk+1
j =

∑
i:j∈Si((xk+1

i )`i(j)+(yki )`i(j))
|{i∈[N ]:j∈Si}| , ∀j ∈ [n], (5.8b)

yk+1
i = yki + (xk+1

i − zk+1
Si ), ∀i ∈ [N ], (5.8c)

where ρ > 0 is a tuning parameter and yi ∈ R|Si|, i ∈ [n], are dual variables corresponding to the

constraints (5.7b). and `i : Si → {1, . . . , |Si|}maps coordinates in Si to their “local” representations

in xi. Under appropriate conditions [13], including the convexity of functions Fi, iterations (5.7) are

guaranteed to converge to an optimal solution of (5.6). Additional details, and convergence criteria,

are provided in Sec. 5.2.2.

Incorporating Constraints. We can include constraints in ADMM by adding them to the objective

(5.7a) via their characteristic functions: a constraint x ∈ D, where D is a convex set, is added to

(5.7a) as a term χD(x), where χD is the characteristic function of D (0 if x ∈ D, +∞ o.w.). Then,

the corresponding step (5.8a) becomes a Euclidean projection onto convex set D.

A Parallel Implementation. All the above steps in (5.8) can be parallelized. To see this, suppose

that we have N + n processors, as illustrated in Fig. 5.2. The N processors in Vobj ≡ [N ] are

responsible for solving problems (5.8a) and performing the dual variable adaptation (5.8c), in parallel.

To do so, they store functions Fi as well as “local” primal and dual variables xi,yi, i ∈ [N ]. The

remaining n processors Vvar = [n] store the coefficients zj , j ∈ [n], of the consensus variable z and

perform the averaging (5.8b). In each iteration, the processors in Vvar send the consensus variables

108



CHAPTER 5. MASSIVELY DISTRIBUTED GRAPH DISTANCES

to the corresponding processors in Vobj. Subsequently, the latter perform adaptations (5.8c) and

(5.8a), and then send their new local variables to the processors in Vvar for averaging.

The communication complexity of each step (5.8), as well as the dependencies between

steps, are determined by the bipartite graph G(Vobj,Vvar, EG) shown in Fig. 5.2: each processor

i ∈ [N ] on the left needs to receive the |Si| consensus variables zj , j ∈ Si to perform (5.8a) and

(5.8c), while processors j ∈ [n] on the right need to collect |{i ∈ [N ] : j ∈ Si}| local variables

(xi)`i(j). As a result, the number of messages exchanged is proportional to the number of edges in G,

namely,
∑

i∈[N ] |Si|.

5.3 Distributed Graph Distances via ADMM

We now turn our attention to solving (5.4) via ADMM. We incorporate constraints (5.4b)

in (5.4a), yielding objective:

‖AP−PB‖p+λ trace
(
P>DA,B

)
+ χR(P) + χC(P), (5.9)

where the sets

R = {P ∈ [0, 1]n×n : P1 = 1, pij = 0 ∀(i, j) /∈ Q}, and

C = {P ∈ [0, 1]n×n : P>1 = 1, pij = 0 ∀(i, j) /∈ Q},

correspond to the (doubly stochastic) constraints on the rows and columns, respectively. With the

exception of the first term, all remaining terms in (5.9) can be written as sums. Indeed, the following

lemma holds:

Lemma 5.3.1. There exists a set I ⊆ [n] × [n] as well as sets Sij ⊆ [n] × [n], Si ⊆ [n] × [n],

Sj ⊆ [n]× [n], for i, j ∈ [n], such that the terms in (5.9) can be written as:

‖AP−PB‖p =
(∑

(i,j)∈I |fij(PSij )|p
) 1
p , (5.10a)

trace(P>DA,B) =
∑

(i,j)∈Q pijdij , (5.10b)

χR(P) =
∑

i∈[n] χR(i)(PSi), (5.10c)

χC(P) =
∑

j∈[n] χC(j)(PSj ), (5.10d)

where fij(·), (i, j) ∈ I, are affine functions and

R(i) = {p ∈ [0, 1]|Si||1>p = 1}, (5.11)

C(j) = {p ∈ [0, 1]|Sj ||1>p = 1}, (5.12)
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for i ∈ [n], j ∈ [n], are the |Si|-dimensional and |Sj |-dimensional simplices, respectively.

Proof. For (i, j) ∈ [n]× [n] the (i, j)-th element of AP−PB is:

(AP−PB)ij =
∑

k:(k,j)∈S(i,j)L

aikpkj −
∑

k:(i,k)∈S(i,j)R

pikbkj ,

where S(i,j)
L = {(k, j) ∈ Q|(i, k) ∈ EA} and S(i,j)

R = {(i, k) ∈ Q|(k, j) ∈ EB}. We can

write (AP−PB)ij as fij(PSij ), where fij(PSij ) ,
∑

k:(k,j)∈S(i,j)L

aikpkj −
∑

k:(i,k)∈S(i,j)R

pikbkj ,

where Sij = S(i,j)
L ∪ S(i,j)

R and fij : R|Sij | → R is a linear function. The entry-wise p norm

of AP − PB is thus (5.10a), where I comprises pairs (i, j) for which Sij 6= ∅. On the other

hand, trace(P>DA,B) =
∑

(i,j)∈Q pijdij by the fact that pij = 0 for (i, j) /∈ Q. The function

χR(P) states that each row i of P belongs to the set: R(i) = {p(i) ∈ [0, 1]|Si||1>p(i) = 1}, where

Si = ({i}×VB)∩Q. As a result, we can write χR(P ) as the sum of the corresponding characteristic

functions. Similarly, χC(P ) can be written as the sum of the characteristic functions for the sets

C(j) = {p(j) ∈ [0, 1]|Sj ||1>p(j) = 1}, corresponding to each column j ∈ [n] of P .

Under this characterization, Prob. 5.4 becomes:

min
P∈Wn

[( ∑
(i,j)∈I

|fij(PSij )|p
) 1
p +

∑
(i,j)∈Q

pijdij (5.13a)

+
∑
i∈[n]

χR(i)(PSi) +
∑
j∈[n]

χC(j)(PSj )

]
. (5.13b)

The first term in (5.13a) (i.e., (5.10a)) cannot be written as a sum of functions, except when p = 1.

Hence, it is not immediately obvious how to parallelize ADMM when p 6= 1. For p = 1, however,

the entire objective can be written as a sum of constituent “local” objectives; hence, in this case,

algorithm (5.8) can be directly parallelized. In all other cases however, we need a specialized

implementation to parallelize the optimization of the term (5.10a).

The application of ADMM (5.8) to all the terms in Prob. (5.13) is summarized Alg. 8;

primal-dual variable pairs:

(pij ,yij)(i,j)∈I , (qij , ξij)(i,j)∈Q, (ri, ψi)i∈[n], (cj , φj)j∈[n],

correspond to terms (5.10a)-(5.10d), respectively. We note that Alg. 8 requires special care to handle

term (5.10a) in the case p > 1; we describe how to address this case in the next two subsections.
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Algorithm 8 Outer ADMM
1: Input: A,B ∈ {0, 1}n×n, D = DA,B ∈ Rn×n+ ,Q ⊆ [n]× [n]

2: Local primal & dual variables at processors in Vobj:

(pij ,yij)(i,j)∈I , (qij , ξij)(i,j)∈Q, (ri, ψi)i∈[n], (cj , φj)j∈[n]

3: Consensus variables at processors in Vvar: Z = [zij ](i,j)∈Q

4: Initialize consensus variables and local/dual variables to 0;

5: Send copies of consensus variables zij to processors in Vobj

6: while not converged do

7: if p = 1 then

8: for all (i, j) ∈ I in parallel do

9: pij ← arg min
pij∈R

|Sij |

(
|fij(pij)|+ ρ

2
‖pij − ZSij + yij‖22

)
10: end for

11: else if p > 1 then

12: Compute pij , (i, j) ∈ I, by solving (5.14) via Alg. 9

13: end if

14: for all (i, j) ∈ Q in parallel do

15: qij ← arg minqij∈R
(
λ · qijdij + (qij − zij + ξij)

2
)

16: end for

17: for all rows i ∈ [n] and all columns j ∈ [n] in parallel do

18: ri ← arg minri∈R|Si|
(
χR(i)(ri) + ρ

2
‖ri − ZSi + ψij‖22

)
19: cj ← arg min

cj∈R
|Sj |

(
χC(j)(cj) + ρ

2
‖cj − ZSj + φij‖22

)
20: end for

21: Send local variables to processors in Vvar

22: Update zij , (i, j) ∈ Q, via averaging (5.8b)

23: Send copies of consensus variables zij to processors in Vobj

24: Update all dual variables via (5.8c)

25: end while

26: return consensus variables Z

5.3.1 Distributing Consensus ADMM for p > 1.

Applying consensus ADMM directly on (5.9) stumbles on the fact that the first term in the

objective cannot be written as a sum; although the “local” optimization step (5.8a) of ADMM can be

parallelized for all other terms, (5.8a) for this term (i.e., Line 12 of Alg. 8) takes the following form:

min
pij ,i,j∈[n]

(∑
(i,j)∈I

|fij(pij)|p
) 1
p+

ρ

2

∑
(i,j)∈I

‖pij−ZkSij+ykij‖22 (5.14)

where pij ∈ R|Sij | is the local vector containing coefficients corresponding to ZSij and ykij ∈ R|Sij |
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Algorithm 9 Inner ADMM
1: Input: {z̄ij : (i, j) ∈ I}
2: Local primal & dual variables at |I| processors in Vobj:

(pij , uij , vij)(i,j)∈I ,

3: Initialize pij to their previous values at the outer iteration, and dual variables vij to 0

4: while not converged do

5: Compute u by solving (5.16a) via Alg. 10

6: for all (i, j) ∈ I in parallel do

7: pij ← arg min
pij∈R

|Sij |

(ρ
2
‖pij−z̄ij‖22 +

ρ′

2
(uij−fij(pij) + vij)

2)
8: Update dual variable vij via (5.16c).

9: end for

10: end while

11: return consensus variables Z

is the dual variable corresponding to pij = ZSij . We rewrite this as:

Minimize: ‖u‖p +
ρ

2

∑
(i,j)∈I ‖pij − z̄ij‖22 (5.15a)

subj. to: uij = fij(pij), for (i, j) ∈ I, (5.15b)

where u = [uij ](i,j)∈I ∈ R|I| is a vector of auxiliary variables corresponding to the the affine terms

fij(pij), and z̄ij ≡ ZkSij − ykij ∈ R|Sij |, for (i, j) ∈ I. As fij(·) are affine functions, so are the set

of constraints. Then, we can also solve (5.15) w.r.t. u and pij via ADMM, where the steps are

uk = arg min
u∈R|I|

‖u‖p+
ρ′

2

∑
(i,j)∈I

(uij−fij(pkij)+vkij)
2 (5.16a)

pk+1
ij = arg min

pij∈R|Sij |

ρ

2
‖pij−z̄ij‖22+

ρ′

2
(uk+1
ij −fij(pij) + vkij)

2 (5.16b)

vk+1
ij = vkij + (uk+1

ij − fij(pk+1
ij )) (i, j) ∈ I, (5.16c)

where ρ′ > 0 is a tuning parameter and vij ∈ R, i, j ∈ [n], are the dual variables corresponding to

linear constraints (5.15b). Step (5.16b) comprises |I| quadratic problems, while (5.16c) is a simple

adaptation; both can be executed in parallel across the |I| processors that store pij , yij , and which

have received ZSij from the (outer) consensus ADMM step (line 23 of Alg. 8). In contrast, it is not

apriori clear how to parallelize step (5.16a); as in the case of the outer ADMM, this is due to the

‖ · ‖p term: we present our algorithm solving (5.16a) in parallel (Alg. 10) next.

The pseudocode for this inner ADMM step is presented in Alg. 9. The code is executed in

parallel across the |I| machines described above. Note that steps (5.16b) and (5.16c) are executed
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Algorithm 10 p-norm Prox. Operator
1: Input: w ∈ Rd, p ≥ 1, ρ > 0, ε > 0

2: Set ŵi ← ρ|wi| for i = 1, . . . , d.

3: if ‖ŵ‖q ≤ 1 then

4: return u∗ ← 0

5: end if

6: Set u← 0, sL ← 0, and sU ← ‖ŵ‖p
7: for k = 1, . . . , log2

⌈
1
ε

⌉
do

8: Set s← (sL + sU )/2

9: Compute ui ← ŵig
(
s · (ŵi)

2−p
p−1

)
for all i ∈ supp(ŵ);

10: Compute ‖u‖p;

11: if ‖u‖p < s then

12: Set sU ← s

13: else

14: Set sL ← s

15: end if

16: end for

17: Set u∗i ← signwi
ρ

ui for i = 1, . . . , d.

18: return u∗

in parallel but require no communication; hence, all communication in Alg. 9 is the one needed by

Alg. 10 to compute u; as we discuss in the next section, this amounts to a logarithmic number of

map and reduce operations.

5.3.2 Parallel p-norm Proximal Operator

For p > 1, motivated by (5.16a), we consider the problem:

minu∈Rd ‖u‖p + ρ
2‖u−w‖22, (5.17)

for a given w ∈ Rd where d ≡ |I|. In doing so, we assume that, as is the case in (5.16a), the

elements of vector w are distributed across d machines, that need to collectively solve (5.17) in

parallel. Following Liu and Ye [68], we define first a non-negative vector ŵ via

ŵi = ρ|wi|. (5.18)

We then consider the following simpler problem:

minu∈Rd+
‖u‖p + 1

2‖u− ŵ‖22. (5.19)
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Note that this differs from Prob. (5.17) in that (a) ρ = 1 and (b) vector w ∈ Rd replaced with

non-negative vector w ∈ Rd+, and (c) optimization happens over u ∈ Rd+. Nevertheless, Prob. (5.17)

is equivalent to Prob. (5.19) (see Lemma 5.3.7 below). In particular, if û is the optimal solution of

(5.19), the optimal solution to (5.17) is given by u∗ such that:

u∗i =
sign(wi)

ρ
ûi, for i ∈ [d]. (5.20)

We therefore turn our attention to solving Prob. (5.19). To do so, we define first an auxiliary function.

Given α ∈ (0,∞), define the function α 7→ g(α), as the unique solution of the following equation

over x ≥ 0:

(x/α)p−1 + x− 1 = 0, (5.21)

We extend g to [0,∞) by setting g(0) ≡ 0 for α = 0, by definition. Function g is hard to express in

closed form,2 but it is well-defined. This is because, for α > 0, the l.h.s is −1 for x = 0 and positive

for x = min(1, α). Hence, by the intermediate value theorem, Eq. (5.21) always has a positive

solution between 0 and min(1, a); uniqueness is implied by the strict monotonicity of the l.h.s. of

Eq. (5.21) in x. Hence, g : R+ → [0, 1] is indeed well-defined.

Having defined g, given a vector ŵ ∈ Rd+, we define functions gi : R+ → R+, i ∈ [d] as:

gi(s) = ŵi · g
(
s · (ŵi)

2−p
p−1
)
, (5.22)

as well as function h : R+ → R as:

h(s) =
(∑d

i=1 gi(s)
p
) 1
p − s. (5.23)

The optimal solution to Prob. (5.19) can be determined w.r.t. a root of equation h(s) = 0. In

particular, the following holds, which we prove in Sec. 5.3.3:

Theorem 5.3.2 (Liu and Ye [68]). Given ŵ ∈ Rd+ and p > 1, let û ∈ Rd+ be an optimal solution to

Prob. (5.19). Let also q ∈ R+ be such that 1
p + 1

q = 1. Then, û is unique, and:

• If ‖ŵ‖q ≤ 1, then û = 0.

• If ‖ŵ‖q > 1, then

ûi = gi(s
∗), for i ∈ [d], (5.24)

where s∗ is the unique value in (0, ‖ŵ‖p] s.t. h(s∗) = 0.
2Though its inverse g−1 is easy to describe explicitly; see Eq. (5.28).
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Intuitively, the above theorem suggests that there are two cases we need to consider. The

first, “easy” case, is when ‖ŵ‖q ≤ 1: then, the optimal solution is 0. If ‖ŵ‖q > 1, i.e., on the “hard

case”, solving Prob. (5.19) is tantamount to finding the unique, scalar root s∗ ∈ (0, ‖ŵ‖p] of the

equation:

h(s) = 0, where h is given by Eq. (5.23).

This is because, once this root s∗ is computed, the optimal solution û ∈ Rd can be constructed via

Eq. (5.24), by computing gi(s∗) for every i ∈ [d].

Crucially, a root of h can be found with a simple bisection algorithm, the steps of which

can be easily parallelized via map and reduce operations. This bisection algorithm, summarized

in Alg. 10, proceeds as follows: given ŵ ∈ Rd+, we test whether the condition ‖ŵ‖q ≤ 1 holds; if

so, we return u∗ = 0. Otherwise, we find s∗ via bisecting [0, ‖ŵ‖p]. That is, at each iteration, we

maintain an upper (sU ) and lower (sL) bound on s∗, initialized at the above values. By construction,

function h alternates signs on each of the two bounds: i.e., h(sL)h(sU ) ≤ 0; at each iteration, we

(a) compute the average s = 0.5(sL + sU ), between the two bounds, (b) find the sign of h on this

average, and then (c) update the bounds accordingly. As signs alternate, by the intermediate value

theorem, s∗ is guaranteed to be in [sL, sU ] at all times.

Another way to get some intuition behind how Alg. 10 behaves in the “hard” case is the

following. At any iteration, s is compared to p-norm of the current solution u ∈ Rd. If ‖u‖ < s,

then s is too big, and we search at a smaller value; if the opposite is true, we search for a larger value,

always adjusting the bounds accordingly. At all times, we set u by following the trajectory in Rd

determined by functions gi, linking the current s to the u.

Since Alg. 10 ensures that the root s∗ is be within [sL, sU ] at all times; Liu and Ye show

that the algorithm thus approximate s∗ within ε accuracy by performing log2 ε
−1 bisections [68]. We

show this implies the following convergence guarantee (see Sec. 5.3.4 for proof):

Theorem 5.3.3. Alg. 10 outputs a solution u ∈ Rd such that ‖u− û‖p ≤ p−1
√
‖ŵ‖q · ‖ŵ‖p · ε.

Hence, Alg. 10 can approximate the optimal solution within arbitrary accuracy within

a logarithmic number of iterations. Finally, it is easy to see that the computations involved in

Alg. 10 can be parallelized across the d processors that store the values wi, i ∈ [d]. Given an s, the

computation of values ûi can happen in parallel via an application of Eq. (5.24) at each ŵi (Line

9). Moreover, the p-norm of u (Line 10), needed to compute the sign of h(s), can be computed via

a reduce; the updated value of s can subsequently be broadcast to processors, to initiate the next
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iteration. We further elaborate on parallelism in Section 5.4, where we discuss the computation and

communication complexity of the entire process, combining Algorithms 8,9, and 10.

5.3.3 Proof of Theorem 5.3.2

The objective of Prob. (5.19) is strongly convex. Hence, the optimal solution û ∈ Rd+ is

unique. We first show that û lies, coordinate-wise, between 0 and ŵ ∈ Rd+:

Lemma 5.3.4. Let û be the optimal solution of Prob. (5.19). Then ûi ∈ [0, ŵi], for all i ∈ [d].

Proof. Suppose that û is an optimal solution of (5.19), s.t., ûi < 0 for some i ∈ [d]. Then, for the

vector û′ with all elements equal to the elements û except the i-th element with û′i = 0 we have the

following ‖û′‖p + 1
2‖û

′ − ŵ‖22 < ‖û‖p + 1
2‖û − ŵ‖22, a contradiction. Similarly, if ûi > ŵi for

some i ∈ [d], we can construct a vector û′, s.t., all of its elements are the same with the elements of

û, except û′i = ŵi, then again ‖û′‖p + 1
2‖û

′ − ŵ‖22 < ‖û‖p + 1
2‖û− ŵ‖22, a contradiction.

The lemma implies that we only need to look for a solution in a bounded domain. Note

also that, as an immediate implication of Lemma 5.3.4, if ŵi = 0, then necessarily also ûi = 0.

The optimal solution û satisfies the KKT conditions:

0 ∈ {g + u− ŵ − α|g ∈ ∂fp(u)}, (5.25a)

αiui = 0 for all i ∈ [d], u ≥ 0, α ≥ 0, (5.25b)

where ∂fp(u) is the subdifferential3 of the function fp(u) = ‖u‖p at the point u. Eq. (5.25a) implies

a condition on ŵ under which the optimal solution to (5.19) is the zero vector:

Lemma 5.3.5. Given p ≥ 1, let q ≥ 1 be such that 1
p + 1

q = 1. If ŵ ∈ Rd+ satisfies ‖ŵ‖q ≤ 1, the

optimal solution to Prob. (5.19) is û = 0.

Proof. We show that u∗ = 0, α∗ = 0 satisfy the KKT conditions (5.25). For u∗ = 0, α∗ = 0,

Eq. (5.25b) is obviously satisfied. Then we need to show that 0 ∈ {g − w|g ∈ ∂fp(0)}, or

equivalently, w ∈ ∂fp(0). Formally, the subdifferential at zero is the set ∂fp(0) = {g|g>u ≤
‖u‖p ∀u}. By Holder’s inequality, for every u we have w>u ≤

∑d
i=1 |wi||ui| ≤ ‖w‖q‖u‖p ≤

‖u‖p, where the last inequality holds as ‖w‖q ≤ 1. Hence, w ∈ ∂fp(0), and u∗ = 0, α∗ = 0 satisfy

the KKT conditions, so 0 is optimal.
3Note that fp is not differentiable at u = 0, hence the need to refer to its subdifferential.
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Intuitively, we prove this by verifying that if ‖ŵ‖q ≤ 1 then u = α = 0 satisfy the

KKT conditions in Eq. (5.25). Lemma 5.3.5 therefore immediately implies the first (“easy”) case of

Theorem 5.3.2.

We therefore turn to the case where ‖ŵ‖q > 1 (the “hard” case). For u 6= 0, fp is

differentiable and its subdifferential is a singleton, i.e., ∂fp(u) = {∇fp(u)}, where

∂fp(u)/∂ui =

(
ui
‖u‖p

)p−1

,

for i ∈ [d]. Suppose that the i-th element of the optimal point û is positive, i.e., ûi > 0. Then, αi = 0

by Eq. (5.25b), and Eq. (5.25a) implies that û satisfies the following equation:(
ûi/‖û‖

)p−1
+(ûi−ŵi)=0, for all i s.t. ûi > 0. (5.26)

The optimality condition (5.26) can equivalently be written as

ûi = ŵig
(
‖û‖p(ŵi)

2−p
p−1

)
, for all i s.t. ûi > 0. (5.27)

where g : R+ → R+ is defined via Eq. (5.21). Recall that Lemma 5.3.4 implies that, if i /∈ supp(ŵ),

then necessarily ûi = 0. We can therefore consider w.l.o.g. a vector ŵ for which supp(ŵ) = [d];

if not, we can compute the optimal solution by setting ûi = 0 for i /∈ supp(ŵ), and focus on what

happens on the remainder of the coordinates, that have full support. Not surprisingly, the optimal

solution in this case is characterized by Eq. (5.27). In particular, the following lemma holds:

Lemma 5.3.6. Consider a w ∈ Rd+ s.t. (a) supp(ŵ) = [d], and (b) ‖w‖q > 1, where 1
p + 1

q = 1.

Let gi : R → Rd, i ∈ [d], and h : R+ → R be given by Eqs. (5.22) and (5.23), respectively. Then,

the unique solution û to Prob. (5.19) is given by ûi = gi(s
∗), for all i ∈ [d], where s∗ is the unique

value in (0, ‖w‖p] s.t. h(s∗) = 0.

Proof. The inverse g−1 of function g is given by

g−1(x) = x(1− x)−1/(p−1). (5.28)

As g−1 is monotone and continuous in [0, 1), we have that g is also monotone and continuous in

R+. Hence, function h is continuous in the interval [0, ‖ŵ‖p]. Given that, by the intermediate value

theorem, g(a) ∈ [0, 1], we have that h(‖ŵ‖p) ≤ 0. Since, by definition, g(0) = 0, we also have that

h(0) = 0. Moreover,

dh(0)

ds
=lim
δ→0

(∑d
i=1(gi(δ))

p
) 1
p−δ

δ
=lim
δ→0

(∑d
i=1(gi(δ))

p

δp

) 1
p

−1.
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By Taylor’s theorem, the first-degree Taylor approximation of gi at 0 is gi(δ) = g′i(0)δ + o(δ2). The

partial derivative g′i(0) is given by: g′i(0) = ŵ
1
p−1

i g′(0). Note that g′(0) =
(
dg−1(0)
dx

)−1
= 1, and, as

a result,

g′i(0) = ŵ
1
p−1

i . (5.29)

Therefore, we have:

∂h(0)

∂s
=lim
δ→0

( d∑
i=1

(ŵ
1
p−1

i δ +O(δ2))p/δp
) 1
p−1=‖ŵ‖

1
p−1
q −1>0,

as ‖ŵ‖q > 1 for q = p
p−1 by the hypothesis of the theorem. Hence, h(s) is positive in a neighborhood

of 0. As h is continuous, and h(‖w‖p) ≤ 0, by the intermediate value theorem h must contain an

s∗ ∈ (0, ‖ŵ‖p] s.t, h(s∗) = 0. Such a solution satisfies Eq. (5.27) for all i ∈ [d] and, as such, it

satisfies the KKT conditions of Prob. (5.19); therefore, it is an optimal solution. Strong convexity

implies its uniqueness.

Lemma 5.3.6, along with our observation on cases where i /∈ supp(ŵ), immediately imply

Theorem 5.3.2. To see this, note first that for i /∈ supp(ŵ), gi(s) = 0 for all s ∈ R+. Moreover,

these 0 coordinates do not contribute to ‖u‖p or ‖ŵ‖p; as such, they do not affect h and, thereby, the

root s∗: the latter is fully determined by only elements in supp(ŵ). Hence, Eq. (5.24) holds for all

coordinates in [d].

5.3.4 Proof of Theorem 5.3.3

We begin by showing the equivalence of Problems (5.17) and (5.19):

Lemma 5.3.7. Let û be an optimal solution to Prob. (5.19), where ŵ is given by Eq. (5.18), then u∗,

given by Eq. (5.20), is an optimal solution to Prob. (5.17).

Proof. We have that: minu∈Rd ρ(‖u‖p+ ρ
2‖u−w‖

2
2) = minu′∈Rd ‖u′‖p+ 1

2‖u
′−w′‖22 for u′ = ρu,

w′ = ρw. One can show that the coordinates of the optimal solution to the latter problem will

have the same sign as the coordinates of w. Let � : Rd × R → Rd indicate the element-wise

multiplication between two vectors, and sign : Rd → {−1,+1}d be the vector resulting from

element-wise application of the sign operator. Then, under the transformation v = sign(w)� u′ ∈
Rd+, Prob. (5.17) is equivalent to: minv∈Rd+

‖ sign(w)�v‖p+ 1
2

∥∥ sign(w)�v− sign(w)� ŵ
∥∥2

2
=

minv∈Rd+
‖v‖p + 1

2‖v − ŵ‖22,as ‖e � y‖p = ‖y‖p for all e ∈ {−1, 1}d, y ∈ Rd, and p ≥ 1.
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Hence, given an optimal solution û to Prob. (5.19), the optimal solution to Prob. (5.17) is given by

u∗ = 1
ρ (sign(w)� û).

Armed with this result, we next show that Alg. 10 correctly bounds the root s∗, whenever

the corresponding for-loop is executed:

Lemma 5.3.8. If ‖ŵ‖q > 1, at every iteration of Alg. 10, s∗ ∈ [sL, sU ].

Proof. By Lemma 5.3.6, there must exist a unique root of h(s) = 0 in (0, ‖ŵ‖p]. This, along with

the strict positivity of h in the vicinity of 0 when ‖ŵ‖q > 1, implies that if h(‖ŵ‖p) = 0, all values

h(s) for s ∈ (0, ‖ŵ‖p) are strictly positive, and the bisection will repeatedly update the lower bound

but never the upper bound. The lemma therefore holds. If, on the other hand h(‖ŵ‖p]) < 0, s∗

must be in (0, ‖ŵ‖p) by Lemma 5.3.6, so the lemma holds for the first iteration. We can show, by

induction on iterations, that h(sL) ≥ 0, with equality holding only if sL = 0, and h(sU ) < 0. If

h(sL) > 0, the lemma follows from the intermediate value theorem. If h(sL) = 0, the lemma again

follows from the intermediate value theorem, and the fact that h is strictly positive in the vicinity of

0.

Observe that the distance between the two bounds is halved at each iteration. Hence, at the

last (log2

⌈
1
ε

⌉
) iteration,

|s− s∗| ≤ |sL − sU | ≤ ‖ŵ‖pε. (5.30)

On the other hand, functions gi : R+ → R+ are Lipschitz:

Lemma 5.3.9. Each function gi : R+ → R+ is Lipschitz continuous with Lipschitz parameter ŵ
1
p−1

i .

Proof. The inverse of g is given by Eq. (5.28), which is strictly increasing, differentiable, and

convex in [0, 1); the latter follows from the fact that the second derivative is non-negative for p > 1,

x ∈ [0, 1). Hence, g is strictly increasing, differentiable, and concave. Each function gi, i ∈ [d],

consists of a composition of g with an affine function, and a multiplication with a non-negative scalar,

so it is also concave. Hence, it is Lipschitz continuous with parameter given by g′i(0); the latter is

characterized by Eq. (5.29).

Lemma 5.3.9 immediately implies that, for u the output of the algorithm, and s the last

estimate of the root:
(∑

i∈[d](ui− ûi)p
)1/p ≤ (∑i∈[d] ŵ

p
p−1

i

)1/p · |s− s∗|, and the theorem follows

from Eq. (5.30), as q = p
p−1 .
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5.4 Parallel Complexity

ADMM is a first-order method, and its convergence is O( 1
k ) [240]. All dual variable

adaptations are linear in their input sizes and so are averaging operations involved in consensus

variable computations; both are parallelized. All primal variable adaptations are convex optimization

problems with self-concordant objectives, either unconstrained or linearly constrained; as such, they

can generically be solved within accuracy ε by interior point methods in steps that are polylogarithmic

in 1/ε, with each step being polynomial in the input size. In particular:

• When p = 1, updating pij , (i, j) ∈ I involves solving a generalized lasso regression problem

(Line 9 of Alg. 8), which can be solved using the algorithm proposed by Tibshirani [241].

Alternatively, the inner ADMM Eq. (5.16) can again be applied; Eq. (5.16a) then amounts to

|I| soft-max operations (each at O(n) cost for computing fij). All all trivially parallelizable

via a map.

• The row and column updates (Lines 18 and 19 of Alg. 8) amount to orthogonal projections

on the simplex; we use the strongly polynomial algorithm by Michelot [242], which has

complexity O(n log n). There are a total of n (one per row/column) such operations, all of

which can again be parallelized via a map applying Michelot’s algorithm.

• The optimization of the trace term involves |Q| one-dimensional quadratic problems (Line

15 of Alg. 8), which have a closed form and can be computed in O(1) time. Again, these

operations can be parallelized via a map; in practice, however, we avoid these computations

altogether by “completing the squares” and incorporating these terms along with the column

and row projections, as adjustments to the vectors projected to the simplices.

• The update of pij in Alg. 9 is an unconstrainted convex quadratic program that has a closed

form solution. Each of these |I| such operations is equivalent to solving a linear system that

can be computed in O(|Sij |2.376) = O(n2.376) time [243]; again, they can be parallelized over

|I| processors via a map.

• The norm computations in Alg. 10 (Lines 3 and 10) depend on vector size |I| and can be

parallelized via a reduce. Updates in Line 9 are O(1) for each of the |I| coordinates;4 this is

parallelizable over |I| processors, via a map.

4Function g can be computed efficiently at an arbitrary accuracy as it is strictly monotone and g−1 has a closed form.
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• There are a total of |I|+ |Q|+ 2n outer and |I| inner dual adaptations, they are all O(1) and

parallelizable via a map.

• The consensus averaging step involves |Vvar| = |Q| scalar summations, adding in total of

|EG | terms, where G(Vobj,Vvar, EG) is the bipartite graph (illustrated in Fig. 5.2) induced

by our problem. Parallelizing this involves message passing between the nodes storing all

Vobj objectives and the |Q| processors storing the consensus values, with the total number of

messages passed being |EG |. Below, we establish bounds on all these quantities.

Putting everything together, assuming the number of iterations of the outer and inner

ADMM are k1, k2 ∈ N, respectively, and that the accuracy used in Alg. 10 is ε, the serial complexity

of our algorithm is:

k1k2O
(
|I|
(
n2.376 + log2

1

ε

))
+ k1

[
O
(
n2 log n

)
+O(|EG |)

]
. (5.31)

Assuming access to max(|I|, n, |Q|) processors, each inner iteration (first term in Eq. (5.31))

can be fully implemented via a constant number of map and reduce operations over these processors,

with maps involving operations of at most O(n log n) complexity, and reduces terminating within

O(log |I|) rounds. On the other hand, the consensus step (second step in Eq. (5.31)) can be done via

message passing between the processors corresponding to nodes of graph G. The parallel complexity

of the algorithm depends on the size of set EG . In particular, we would like to determine conditions

under which G is sparse. We therefore turn our attention to bounding the sparsity of G of the problem

input size.

5.4.1 Characterizing the Sparsity of G

The induced bipartite graph G(Vobj,Vvar, EG), as illustrated in Fig. 5.2, depends on the

number of terms that appear in the problem objective (determining Vobj) as well as on the number of

times each variable appears in each such term (determining EG). We first bound the size of Vobj:

Lemma 5.4.1. Let E ∈ {0, 1}n×n be the binary matrix whose support is Q, and let m0 ≡ ‖AE +

EB‖0. Then, the summation inside the first term (5.10a) of objective (5.9) contains |I| ≤ m0 terms;

collectively, the remaining three terms (5.10b)-(5.10d) contain at most |Q|+ 2n terms.

Proof. The number of non-zero elements in the matrix AP − PB is at most the number of the

non-zero elements in AP + PB, where P is a matrix has the full support under constraints G,
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e.g., P = E. Each set Sij defines the support of the (i, j)-th element of AP−PB; therefore, we

conclude that the total number of non-empty sets Sij is upper-bounded by m0. For the terms (5.10c)

and (5.10d), it is easy to see that we have |VA| = n sets Si and |VB| = n sets Sj , each corresponding

to the nodes i ∈ VA and j ∈ VB , respectively.

Lemma 5.4.1 immediately implies that the bipartite graph G(Vobj,Vvar, EG) satisfies:

|Vobj| ≤ m0 + |Q|+ 2n and |Vvar| = |Q|. (5.32)

Our next lemma characterizes |EG |:

Lemma 5.4.2. The supports of fij(·), χR(·), χC(·) satisfy:∑
(i,j)∈I |Sij |≤min(n|EA|,n|Q|)+min(n|EB|,n|Q|), (5.33a)∑
i∈[n] |Si| ≤ |Q|,

∑
j∈[n] |Sj | ≤ |Q|. (5.33b)

The support of functions fij(·) is also bounded by:∑
i,j∈[n] |Sij | ≤ m0 (max(dA, dQ) + max(dB, dQ)) , (5.33c)

where dA, dB , and dQ denote the maximum degrees of graphs GA, GB , and G([n], [n],Q), respec-

tively.

Proof. Let S(i,j)
L = {(k, j) ∈ Q}∩ {(i, k) ∈ EA} and S(i,j)

R = {(i, k) ∈ Q}∩ {(k, j) ∈ EB}. Then∑
i,j∈[n] |S

(i,j)
L | =

∑
j∈[n]

∑
i∈[n] |S

(i,j)
L | ≤

∑
j∈[n] min(|EA|, ndj) ≤ min(n|EA|,

∑
j∈[n] ndj) =

min(n|EA|, n|Q|), where dj is the node degree for j ∈ VB .

Similarly, we can show that
∑

i,j∈[n] |S
(i,j)
R | ≤ min(n|EB|, n|Q|).As a result,

∑
i,j∈[n] |Sij | ≤∑

i,j∈[n] |S
(i,j)
L |+ |S(i,j)

R | ≤ min(n|EA|, n|Q|) + min(n|EB|, n|Q|).
Now we prove (5.33c). For each set Sij we have that: |Sij | ≤ |S(i,j)

L | + |S(i,j)
R | ≤

max(di, dQ) + max(dj , dQ) ≤ max(dA, dQ) + max(dB, dQ). From this and Lemma 5.4.1, which

shows that I ≤ m, we get
∑

i,j∈[n] |Sij | ≤ mmaxi,j(|Sij |) ≤ m(max(dA, dQ) + max(dB, dQ)).

For Si, i ∈ [n] we have that:
⋂
i Si = ∅, and

⋃
i Si = {(k, j) ∈ Q|j ∈ VB} ⊆ Q. Therefore, for the

total size we have:
∑

i |Si| = | ∪i Si| ≤ |Q|.

Lemma 5.4.2 implies that the number of edges in G is:

|EG | ≤M + 3|Q|, (5.34)
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where M is the minimum among the bounds in (5.33a) and (5.33c). Hence, Eq. (5.32) and (5.34)

together provide conditions under which when G is sparse. This happens if, e.g., m0 = O(n2) and

both GA and GB are sparse: by Eq. (5.33a), graph G would then have a number of edges that is

O(Vobj + Vvar). Alternatively, the same occurs when dA, dB , and dQ are bounded (by Eq. (5.33c)).

5.5 Experiments

5.5.1 Experimental Setup

Execution environment. We run Spark on a local cluster that comprises 8 machines. Each machine

has 2 Intel(R) Xeon(R) CPUs (E5-2680 v4) with 14 cores, and the cluster has 8× 28 = 224 cores in

total. We run OpenMP on the Google Cloud Platform5 and on a n1-standard-96 machine with

96 (virtual) cores and 360GB RAM.

Metrics. We report the objective as well as the primal and dual residuals as the iterations of our

ADMM algorithm progress. The latter measure convergence. We evaluate the optimality of our

solution by a parameter ε ∈ R defined as: ε = max

(
‖rK‖2√
|I|
, ‖s

K‖2√
|I|

)
, where rK and sK are the

primal and dual residuals [13] at the last iteration . The smaller ε is, the closer the solution is to the

optimal.

Datasets. We experiment on several real graphs from the Network Repository6 and the Stanford

Large Network Dataset Collection7, which we summarize in Table 5.1. Four graphs bnm1, bnm2,

bnc1, and bnc2 are brain networks. ptn1 and ptn2 are biological networks, while rt1 and rt2

are re-tweet networks. The nodes in dzr1 and dzr2 are users of the music streaming service Deezer

for two different countries, where edges show friendship. The graphs sld1 and sld2 represent

social interactions between the users of the website Slashdot. We also experiment on synthetic Erdős

Rényi, ER(n, q), graphs with n nodes and edge probability q, where n ranges from 26 to 217.

Preprocessing. For real graphs we use 4 node features: the size of the first-hop and second-hop

neighborhoods, the number of paths of length 2, and their pagerank. For synthetic graphs, in addition

to these 4 features, we also compute the number of paths and cycles of length 3 along with the size

of the third-hop neighborhood. Given two graphs, we construct the dissimilarity matrix DA,B using

the `2 distance between features. We construct the constraint set Q for real graphs by one of the

following methods, which we report along with the size of the set Q in Table 5.1.
5https://cloud.google.com
6http://networkrepository.com
7https://snap.stanford.edu/data/index.html
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pair (GA, GB) |VA|, |VB| |EA|, |EB| Q |Q| |I|

cortex (bnc1, bnc2) 91, 93 1.9K, 2.6K all 8.6K 8.6K

monkey (bnm1, bnm2) 242, 91 4K, 628 all 58.5K 58.5K

protein (ptn1, ptn2) 1.5K, 1.8K 2K, 4K degree 3.3M 3.3M

retweet (rt1, rt2) 3.2K, 3.2K 3.4K, 3.9K degree 5.9M 2.7M

deezer (dzr1, dzr2) 41.8K, 47.5K 125.8, 222.8K WL2 1.1M 2.9M

slashdot (sld1, sld2) 77K, 82K 828K, 870K WL3 98K 2M

Table 5.1: A summary of real graph pairs along with the preprocessing method for generating Q.

• all: Q includes all pairs (i, j) ∈ V2, i.e., |Q| = n2.

• degree: Q includes pairs (i, j) ∈ V2, s.t., the nodes i and j have the same node degree.

• WLk: Q includes pairs (i, j) ∈ V2, s.t. i, j have the same color: we generate node colors by

running the Weisfeiler-Lehman (WL) algorithm [206] (see Sec. 5.1.1 and Sec. 2 in [1]) for k

iterations.

For synthetic graphs we use all for generating Q.

Implementation. We implemented Alg. 8 over Spark (version 2.3.2), an open-source cluster-

computing framework [33], via its Python interface (version 2.7.15). We also implemented Alg. 8 in

Ansi C (glibc version 2.23), using OpenMP (version 4.0) and Atlas (version 3.10.2).

5.5.2 Linear Term

We begin by studying the effects of the linear term in (5.4) on convergence. GA is an

ER(64, 0.1) and GB is a random permutation of GA. We show the trace of residuals and the norm

throughout iterations of ADMM for λ = 0, 0.1, 10 in Fig. 5.3. We run ADMM for each λ value

for a fixed number of iterations (160). In all cases the optimal solution is the permutation matrix

used to generate GB from GA, so the optimal objective value is 0. Note that in Fig. 5.3 all of

the objective values as well as the residuals indeed converge to zero. We see that non-zero λ

values significantly accelerate convergence, as the linear term directs the algorithm faster to the

correct solution. The logarithm-scaled plot accentuates the faster linear convergence of ADMM for

λ = 0.1, 10 in comparison with slower sub-linear convergence for λ = 0.
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Figure 5.3: Effects of adding the linear term on the convergence. The plot shows the traces for
the objective and the primal and dual residual throughout ADMM iterations (Alg. 8 for p = 2) for
different λ. We observe that giving a larger coefficient to the linear term makes the convergence
considerably faster.
5.5.3 p-norms

We next assess the quality of the computed doubly stochastic matrix P w.r.t. p-norms. We

let again GA be ER(64, 0.1). We generate another graph GB by adding different noise types to GA

according to the following scenarios:

• Bernoulli noise (BRN): We flip each element in A with probability 0.01.

• Outliers (OUTk): We choose k nodes (outliers) from GA uniformly at random and make them

connected to every other node in GB . We experimented with k = 1, 2 outliers, (i.e, OUT1 and

OUT2, respectively).

• Gaussian noise (GSS): We add i.i.d. zero-mean Gaussian noise with variance 0.01 to the

elements of A.

• Laplacian noise (LPC): We add i.i.d. zero-mean Laplacian noise with variance 0.01 to the

elements of A.

• Mixture of Gaussian and Laplacian noise (MIX): We add a mixture of i.i.d. zero-mean Gaussian

and Laplacian random variables with 0.01 variance; the mixture coefficients are equally set to
√

0.5 so that the variance is 0.01.

We obtain the matrix P by solving (5.4) for different pair (p, λ) values. As GB is a

perturbed version of GA, i.e., generated via the addition of noise, we measure the quality of the

resulting solution by how far it deviates from the identity. As metrics, we report the Diagonal

Probability Mass (DPM) of P, defined as the sum of the diagonal elements normalized by n = 64,
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BRN OUT1 OUT2

(p, λ) DPM DPMP DPM DPMP DPM DPMP

(1, 0.0) 0.99 1.0 0.32 1.0 0.08 0.98

(1, 0.1) 0.99 1.0 0.33 1.0 0.05 0.45

(1, 1.0) 0.97 0.97 0.33 1.0 0.05 0.45

(1.5, 0.0) 0.14 1.0 0.42 1.0 0.24 0.99

(1.5, 0.1) 0.27 0.98 0.43 1.0 0.23 0.98

(1.5, 1.0) 0.49 0.97 0.38 1.0 0.10 0.82

(2, 0.0) 0.12 1.0 0.35 1.0 0.18 0.98

(2, 0.1) 0.25 0.97 0.08 0.97 0.06 0.90

(2, 1.0) 0.3 0.95 0.04 0.45 0.06 0.91

(3, 0.0) 0.11 1.0 0.25 0.98 0.04 0.24

(3, 0.1) 0.29 0.97 0.01 0.03 0.01 0.05

(3, 1.0) 0.42 0.82 0.01 0.02 0.01 0.05

(5, 0.0) 0.097 0.98 0.3 1.0 0.04 0.24

(5, 0.1) 0.31 0.92 0.01 0.006 0.01 0.04

(5, 1.0) 0.36 0.58 0.01 0.01 0.01 0.04

(N/A, 1.0) 0.32 0.32 0.02 0.02 0.01 0.009

Table 5.2: Comparison of different p-norms and λ coefficients for the linear term for BRN, OUT1,
and OUT2. When considering only the linear term, we denote p value by N/A and report the
corresponding results in the last row.

GSS LPC MIX

(p, λ) DPM DPMP DPM DPMP DPM DPMP

(1, 0.0) 0.12 0.99 0.08 0.87 0.16 1.0

(1.5, 0.0) 0.14 1.0 0.8 1.0 0.19 1.0

(2, 0.0) 0.15 1.0 0.09 1.0 0.20 1.0

(3, 0.0) 0.16 1.0 0.09 0.98 0.21 1.0

(5, 0.0) 0.163 1.0 0.1 1.0 0.22 1.0

Table 5.3: Comparison of different norms for GSS, LPC, and MIX. Here we do not report results for
λ 6= 0, as the second graph is weighted and fully connected.

and the Diagonal Probability Mass after Projection (DPMP) on the set of permutation matrices Pn,

i.e., DPM = 1
n

∑
i∈[n] Pii and DPMP = 1

n

∑
i∈[n] P

π
ii, where Pπ = arg minP′∈Pn ‖P−P′‖22.

We report results for the first three cases with unweighted edges, i.e., BRN, OUT1, and

OUT2 in Table 5.2. Note that for other cases, i.e., GSS, LPC, and MIX, the edges in GB are weighted

and thusly GB is fully connected, so we do not add the linear term (λ = 0). We report results for the

latter in Table 5.3. The reported results are averaged over 5 random runs; graphs GA are generated

independently at random for each run, then GB is generated following the scenarios outlined above.

We make the following observations from Table 5.2. We first concentrate on BRN, reported

in the first column of the table. We see that in the absence of the linear term (λ = 0), p = 1 has a

superior performance and recovers the identity matrix. We further observe that for other p values
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Figure 5.4: Effects of adding linear term on solutions for p = 5 and BRN noise. We assess that adding
the linear term λ = 0.1 increases the values on the diagonal. However, increasing λ further to 1.0
makes solution highly biased on the extracted node features; this is obvious from the non-diagonal
gray elements.

adding the linear term (λ = 0.1, 1) improves the solution. For instance, by comparing metrics for

λ = 0 and λ = 0.1 in the first column (BRN case) we see that adding the linear term generally

increases DPM, while DPMP stays almost the same (above 0.9). However, increasing λ further to

1 decreases DPMP significantly. The reason is that increasing λ makes the solution highly biased

on the extracted features. Motivated by this observation we also tested the case with only the linear
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term, where p is denoted by N/A, we see that DPM and DPMP values are grossly inferior, in

comparison to other cases. These observations suggest that there is a trade-off between the first norm

term, and the second linear term in (5.4); the linear term can improve the solution by incorporating

node features; however, using a high λ values makes the results highly dependent on the crafted node

features.

To make this point more vivid we visualize solutions as heatmaps for p = 5 and different λ

values and the case with only linear term in Fig. 5.4; from the figure we see that increasing λ from 0

to 0.1 increases the overall diagonal values (see Fig 5.4a and 5.4b). We see that increasing λ further

to 1 slightly increases the diagonal mass but also increases non-diagonal values (see Fig. 5.4c); by

comparing Fig. 5.4c and Fig. 5.4d we see that the non-diagonal elements in the former corresponds

to the solution generated by adding the linear term (see the non-diagonal elements in Fig. 5.4c and

Fig. 5.4d).

For the two types of outliers (OUT1 and OUT2) reported in next columns of Table 5.2, we

see that p = 1.5 outperforms other p values. This is in contradiction to the previous case (BRN),

where p = 1 outperformed other p values. We further observe that despite the case of BRN adding

the linear term only deteriorates solutions. The reason is that adding outlier nodes adversely interfere

with the extracted node features that are all dependent on degree and neighborhood information.

Finally we report results for other noise types with weighted edges, i.e., GSS, LPC, and

MIX in Table 5.3. Here all p norms have comparable performances; they all achieve DPMP = 1,

but DPM is slightly higher for higher p values.

5.5.4 Scalability

We evaluate the scalability of our proposed ADMM algorithm w.r.t. the graph size n and the

number of CPUs. We report the results for two different objectives ‖AP−PB‖22 and ‖AP−PB‖2
with λ = 0, in Tables 5.4 and 5.5, respectively. The two problems are mathematically equivalent.

However, ‖AP − PB‖22 has a separable form, therefore, Alg. 8 skips the inner loop (Alg. 9); in

this case, Line 9 in Alg. 8 is an unconstrained quadratic problem, which has a closed form solution.

In particular, we report setup time tSU and iteration time tIT. tSU includes the time spent creating

and initializing the variables, i.e., Lines 2 to 4 in Alg. 8. tIT is the average iteration time of Alg. 8,

i.e., Lines 7 to 24. ADMM is a first-order-method and it usually needs ≈100 iterations to converge.

Therefore, the iteration time dominates the setup time, but for completeness we report setup times

too. In this experiment GA, GB, and Q are Erdős Rényi graphs. We experiment with two settings,
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Dense Sparse

n 210 211 212 213 214 215 216 217

|EA|,|EB | 5.2K,5.2K 20.9K,21K 84K,83.8K 49K,48.7K 103K,104K 220K,221K 464K,465K 980K,981K

|Q|,|I| 10.4K,194.9K 42K,1.4M 168K,9.4M 48.7K,1.1M 103K,2.5M 219K,5.8M 465K,13M 979K,29M

CPUs tSU(s) tIT(s) tSU(s) tIT(s) tIT(s) tIT(s) tSU(s) tIT(s) tSU(s) tIT(s) tSU(s) tIT(s) tSU(s) tIT(s) tSU(s) tIT(s)

OpenMP

1 8 4 126 39 1076 412 4 - - - - - - - -

10 10 0.4 145 4 1074 43 4 - - - - - - - -

20 9 0.23 121 2 1045 19 4 - - - - - - - -

30 9 0.17 121 1 953 12 4 - - - - - - - -

Spark

1 803 680 6095 9570 � 4173 2891 11155 6339 22183 15250 � �

10 288 88 639 1139 � 2147 357 6419 769 12009 1896 � �

20 257 56 370 688 � 2029 216 6208 463 11435 1175 � �

30 257 56 302 559 � 1984 177 5869 392 10762 975 � �

56 294 79 293 402 � 1963 154 6000 338 10713 910 � �

448 75 26 52 62 1123 437 290 34 806 67 1409 135 4200 250 10990 790

Table 5.4: Scaling results for Alg. 8 and ‖AP−PB‖22 objective (λ = 0). In this case Alg. 8 skips the
inner loop Alg. 9 as the objective is separable. We run our ADMM algorithms using both OpenMP
and Spark implementations on the synthetic graphs. tIT is the average over 5 iterations. We denote
the cases that the execution ran out of memory by � and ones that produced a segmentation fault
with4.

Dense Sparse

n 210 211 212 213 214 215 216 217

|EA|,|EB | 5.2K,5.2K 20.9K,21K 84K,83.8K 49K,48.7K 103K,104K 220K,221K 464K,465K 980K,981K

|Q|,|I| 10.4K,194.9K 42K,1.4M 168K,9.4M 48.7K,1.1M 103K,2.5M 219K,5.8M 465K,13M 979K,29M

CPUs tSU(s) tIT(s) tSU(s) tIT(s) tSU(s) tIT(s) tSU(s) tIT(s) tSU(s) tIT(s) tSU(s) tIT(s) tSU(s) tIT(s) tSU(s) tIT(s)

56 63 642 1566 11468 � 101 3040 218 6475 495 15359 � �

448 21 222 60 1490 584 5463 35 455 44 907 98 2070 196 4327 565 9121

Table 5.5: Scaling results for Alg. 8 and ‖AP−PB‖2 objective (λ = 0). In comparison to Table 5.4,
we see that in general the iteration time is longer because each iteration of Alg. 8 executes the inner
ADMM loop Alg 9 (for 60 iterations).

i.e., (a) “dense” graphs ER(n, 0.01) (n = 210 to 212) and (b) “sparse” graphs ER(n, 1.1 log n/n) for

n = 213 to 217.

For ‖AP−PB‖22 we use both the OpenMP (in C) and the Spark (in Python) implementa-

tions. For Spark, when running with 56 cores or less, we use a single machine out of the cluster. From

Table 5.4 we see that for dense graphs OpenMP has excellent speedup; for example, we see that tIT

for 30 CPUs is 30× smaller than tIT for 1 CPU, matching the level of parallelism. However, the Spark

implementation is slower for these dense graphs. This is due to both the high-level programming

language (Python) and the Spark overheads, e.g., the cost of communicating the consensus variables

across machines, which is more considerable in the dense graphs. We report speedups for running

over a Spark cluster with 480 CPUs based on Gustafoson’s law [244] that computes speedup as

follows, sspeedup = 1−γ+γsparspeedup,where γ ∈ [0, 1] is the portion of the serial program that can be
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Figure 5.5: Traces of our ADMM algorithm for p = 2 and real graphs pairs. For cortex, retweet,
deezer, and slashdot pairs λ is set to 0.001, while for monkey and protein it is 0.1. We run
the inner loop (Alg. 9) for 60 iterations. The average iteration time (of Alg. 8) for cortex, monkey,
protein, retweet, deezer, and slashdot is 364(s), 712(s), 3836(s), 4375(s), 3797(s), and
2290(s), respectively.

parallelized (ADMM iterations in Alg. 8) and sparspeedup is the speedup for the portion of the program

that benefits from parallelism. We compute γ as the ratio of running time for ADMM iterations (we

consider 100 iterations) to the total running time for serial execution (1 CPU), i.e., γ = 100×tIT
100×tIT+tSU ,

where tIT, tSU correspond to 1 CPU in Table 5.4. We compute sparspeedup by comparing tIT values for

1 CPU and 480 CPUs. The speedups for Table 5.4 are 26, 153, 84, 92, and, 110, respectively for

n = 210, 211, 213, 214, and 215.

As expected from Lemma 5.4.2, the Spark scales better for sparse graphs. For each n, by

increasing the number of CPUs from 1 to 56, on a single machine, we see a consistent speedup in

both tIT and tSU. Moreover, when running over cluster (448CPUs) it is 4.5, 5, and 6.7 times faster

then a single machine (56CPUs) for n = 213, 214, and 215, respectively.

For ‖AP−PB‖2 we only report the results for Spark implementation in Table 5.5. By

comparing the running times for 448 CPUs and 56 CPUs we see speedups of 2.89 and 7.69, for

the dense graphs with n = 210 and 211, respectively, and speedups of 6.68, 7.13, and 7.41 for the

sparse graphs of size n = 213, 214, and 215, respectively. We again observe that for sparse graphs our

algorithm scales better than dense graphs: for spares graphs the running times almost consistently

double as we double n. In comparison to Table 5.4, we see that setup times are lower as for the case

of ‖AP−PB‖22 our implementation pre-computes some matrices.

5.5.5 Real Graph Pairs

We use our proposed ADMM algorithm to compute distances for the real graph pairs

summarized in Table 5.1. We force a pair of graphs GA and GB to have the same number of nodes
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n = max(|VA|, |VB|) by adding isolated (degree 0) dummy nodes to the smaller graphs.

For brevity, we only report results for p = 2. Fig. 5.5 shows the trace of residuals and norm.

We see that our algorithm converges for all these graph pairs; for cortex, monkey, protein,

retweet, deezer, and slashdot, the parameter ε is 0.01, 0.005, 0.0006, 0.001, 0.3, and 0.06,

respectively. The average iteration time of Alg. 8 for these pairs are 364(s), 712(s), 3836(s), 4375(s),

3797(s), and 2290(s), respectively, scaling well with |Q| and |I|.

5.6 Conclusion

We present a massively parallel algorithm for graph distance computation via ADMM. We

can consider penalty terms beyond the trace. Accelerating this method further, via, e.g., optimally

partitioning the data, are important open problems. Our approach allows introducing additional

penalty terms beyond the trace we considered here. Identifying means of accelerating this method

further, as well as how to optimally partition the data, are important open problems.

The key in our distributed algorithm is Inner ADMM steps (Alg. 9) for solving the non-

separable problem (5.14), which uses the efficient p-norm proximal operator as a building block. In

the next chapter, we show that a similar algorithm can be adopted for minimizing the composition

of the `p norm with a linear function plus a quadratic term-as is the case in (5.14)- and is highly

efficient, in comparison with gradient methods.

We also showed that considering different `p norms in the objective is important, as

different norms have better performance under different conditions, e.g., the type of noise added to

data. In the next chapter we explore this further and propose to replace the commonly used mean

squared error with the `p norm; we show that this objective is more robust to outliers and generally

leads to better performance, e.g., higher accuracy in classification tasks.
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Chapter 6

Robust Regression via Model Based

Optimization

Mean Squared Error (MSE) loss problems are ubiquitous in machine learning and data

mining. Such problems have the following form:

min
θ

1

n

n∑
i=1

‖F (θ;xi)‖22 + g(θ), (6.1)

where function F : Rd × Rm → RN captures the contribution of a sample xi ∈ Rm, i = 1, . . . , n,

to the objective under the parameter θ ∈ Rd and g : Rd → R is a regularizer. Example applications

include training auto-encoders [44, 45], matrix factorization [46], and multi-target regression [47].

The MSE loss in (6.1) is computationally convenient, as the resulting problem is smooth

and can thus be optimized efficiently via gradient methods, such as stochastic gradient descent

(SGD). However, it is well-known that the MSE loss is not robust to outliers [2, 49, 50, 51, 52], i.e.,

samples far from the dataset mean. Intuitively, when squaring the error, outliers tend to dominate the

objective.

To improve the sensitivity of MSE to outliers, Ding et al. [49] first suggested replacing

the MSE with the `2 norm in the context of Principal Component Analysis (PCA). This motivated

a line of research for developing robust algorithms using the `2 norm in different applications,

e.g., non-negative matrix factorization [51], feature selection [53, 50], training autoencoders [44],

and k-means clustering [54]. Attaining robustness via the `1 norm has also been used in matrix

factorization [55, 56, 52], PCA [57, 58, 59], and regression [60]. Robustness of the `1 norm can be
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Figure 6.1: Robustness of `p norms vs. MSE to outliers introduced to MNIST when training an
autoencoder. Figures 6.1a and 6.1b show the average loss over the non-outliers and the test set,
respectively; values in each figure are normalized w.r.t. the largest value. The test accuracy of a
logistic regression on the latent features is shown in Fig. 6.1c. We see that, under MSE, both for
the loss values and classification accuracy are significantly affected by the fraction of outliers Pout.
Robust embeddings under p = 1, 2 norms optimized via our proposed MBO methods exhibit almost
constant behavior w.r.t. Pout.

linked to robustness of median to outliers in comparison to average value (see, e.g., Friedman et

al. [2]).

Motivated by this approach, we study the following robust variant of Problem (6.1):

min
θ

1

n

n∑
i=1

‖F (θ;xi)‖p + g(θ), (6.2)

where ‖ · ‖p denotes an `p norm (p ≥ 1). We are particularly interested in cases where F is not

affine and, in general, Problem (6.2) is non-convex. This includes, e.g., feature selection [50], matrix

factorization [51, 55], auto-encoders [44], and deep multi-target regression [60, 47]. Our problem

includes robust variations considered in, e.g., [60, 50, 44, 51, 55], as special cases. However, these

earlier algorithms are tailored to specific `p norms and/or do not generalize beyond the studied

objective or application (some works, e.g., [50, 60], only consider convex problems). In contrast,

we unify these variations for different applications as a non-convex and non-smooth problem, and

present a general optimization algorithm for arbitrary `p norms.

A significant challenge behind solving Prob. (6.2) is that its objective is not smooth, pre-

cisely because the `p norm is not differentiable at 0 ∈ RN . For non-convex and non-smooth problems

of the form (6.2), where the objective contains a composite function, Model-Based Optimization

(MBO) methods [61, 62, 63, 64, 65, 66] come with good experimental performance as well as theoret-

ical guarantees. In particular, these MBO methods define a convex (but non-smooth) approximation

of the main objective, called the model function. They then iteratively optimize this model function
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plus a proximal quadratic term. Under certain conditions, MBO converges to a stationary point of

the non-convex problem [61].

In this work, we use MBO to solve Problem (6.2) for arbitrary `p norms. In particular,

each MBO iteration results in a convex optimization problem. We solve these sub-problems using

a novel stochastic variant of the Online Alternating Direction Method (OADM) [67], which we

call Stochastic Alternating Direction Method (SADM). Using SADM is appealing, as its resulting

steps have efficient gradient-free solutions; in particular, we exploit a bi-section method [68, 20]

for finding the proximal operator of `p norms. We provide theoretical guarantees for SADM. As

an additional benefit, SADM comes with a stopping criterion, which is hard to obtain for gradient

methods when the objective is non-smooth [69].

Overall, we make the following contributions:

• We study a general outlier-robust optimization that replaces the MSE with `p norms. We show

that such problems can be solved via Model-Based Optimization (MBO) methods.

• We propose SADM, i.e., a stochastic version of OADM, and show that under strong convexity

of the regularizer g, it converges with a O(log T/T ) rate when solving the sub-problems

arising at each MBO iteration.

• We conduct extensive experiments on training auto-encoders and multi-target regression. We

show (a) the higher robustness of `p norms in comparison with MSE and (b) the superior

performance of MBO, against stochastic gradient methods, both in terms of minimizing the

objective and performing down-stream classification tasks. In some cases, we see that the

MBO variant using SADM obtains objectives that are 29.6× smaller than the ones achieved

by the competitors.

The performance of our MBO approach is illustrated in Fig. 6.1. An autoencoder trained via SGD

over the MSE objective is significantly affected by the presence of outliers; in contrast, our MBO

methods applied to `p objectives are robust to outliers. These relative benefits are also evident in a

downstream classification task over the latent embeddings. The remainder of this paper is organized

as follows. We introduce our robust formulation along with its applications in Sec. 6.1. We describe

the instance of MBO applied to our problem in Sec. 6.2. We introduce SADM and its convergence

analysis in Sec. 6.3 and present our experiments in Sec. 6.4. We finally conclude in Sec. 6.5.
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6.1 Robust Regression and Applications

Notations. Lowercase boldface letters represent vectors, while capital boldface letters represent

matrices. We also use the notation [n] , {1, 2, . . . , n}.
Robust Regression. We first extend Prob. (6.2) to include constraints via:

min
θ

1

n

∑
i∈[n]

‖F (θ;xi)‖p + g(θ) + χC(θ), (6.3)

where, again, F : Rd × Rm → RN is smooth, || · ||p is the `p norm, g : Rd → R is a convex

regularizer such that inf g > −∞, while χC : Rd → {0,∞} is the indicator function of the convex

set C ⊆ Rd. In practice, we are often interested in cases where either the regularizer or the constraint

is absent.

Applications. For the sake of concreteness, we introduce some applications of Prob. (6.3). Function

g is typically either the lasso (i.e., the `1 norm g(θ) = ‖θ‖1) or ridge regularizer (i.e., the `2 norm

squared g(θ) = ‖θ‖22). We thus focus on the definition of F (·; ·) and constraint set C in each of these

applications.

Auto-encoders [44]. Given n data points xi ∈ Rm, i ∈ [n], auto-encoders embed them in a

m′−dimensional space, m′ � m, as follows. The mapping to Rm′ is done by a possibly non-linear

function (e.g., a neural network) with denc parameters Fenc : Rdenc ×Rm → Rm′ , called the encoder.

An inverse mapping, the decoder Fdec : Rddec × Rm′ → Rm with ddec parameters re-constructs the

original points given latent embeddings. Both the encoder and the decoder are trained jointly over a

dataset {xi}ni=1 by minimizing the reconstruction error; cast in our robust setting, this amounts to

minimizing (6.3) with

F (θ;xi) = xi − Fdec (θdec;Fenc(θenc;xi)) , (6.4)

where θ = [θdec; θenc] ∈ Rdenc+ddec comprises the parameters of the encoder and the decoder.

Robustness here aims to ameliorate the effect of outliers in the dataset {xi}ni=1. The constraint set

can be Rd (i.e., the problem is unconstrained) or an `p-norm ball (i.e., {θ | ‖θ‖p ≤ r}, for some

r > 0, p ≥ 1), when the magnitute of parameters is constrained; this can be used instead of a `1 or

`2 norm regularizer. In stacked denoising autoencoders [48], the encoder and decoder are shallow

and satisfy the additional constraint θenc = θdec.

Multi-target Regression [245]. We are given a set of n data points xi ∈ Rm, i ∈ [n] and the

corresponding target labels yi ∈ Rm
′
. The goal is to train a (again possibly non-linear) function
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f : Rd × Rm → Rm′ , with d parameters, to predict target values for a given vector x ∈ Rm. This

maps to Prob. (6.3) via:

F (θ;xi,yi) = yi − f(θ;xi). (6.5)

Robustness in this setting corresponds to ameliorating the effect of outliers in the label space, i.e.,

among labels {yi}ni=1. The constraint set can again be Rd or defined through an `p-norm ball (instead

of the corresponding regularizer).

Matrix Factorization [246]. Given a matrix X ∈ Rn×m., the goal is to express it a the product of

two matrices G,H. Cast in our setting, each row xi ∈ Rm, i ∈ [n], of X is mapped to a lower

dimensional sub-space as a vector hi ∈ Rm
′
, where the sub-space basis is defined by the rows of

the matrix G ∈ Rm×m′ . Function F is then given by F (θ;xi) = xi −Ghi, where θ = (G,H),

where the rows of the matrix H ∈ Rn×m′ are the low-dimensional embeddings hi. Robustness here

limits sensitivity to ourliers in rows; a similar problem can be defined in terms of robustness to

outliers in columns. Beyond usual boundedness constraints, additional constraints are introduced in

so-called non-negative matrix factorization [246, 247], where matrices G and H are constrained to

be non-negative.

For all three applications, we assume that F is smooth; this requires, e.g., smooth activation

functions in deep models. Moreover, in all three examples, Prob. (6.3) is non-convex and non-smooth,

as ‖ · ‖p is non-differentiable at 0 ∈ RN .

6.2 Robust Regression via MBO

In this section, we outline how our non-smooth and non-convex problem in (6.3) can be

solved via MBO. More broadly, non-smooth and non-convex optimization problems arise in many

applications, such as non-negative matrix factorization [46], compressed sensing with non-convex

norms [248], and `p norm regularized sparse regression problems with [249, 250]. Before presenting

MBO for our problem, we review relavnt non-smoot non-convex optimization approaches.

A class of non-smooth non-convex optimization problems, known as weakly convex

problems [251], i.e., problems in which the objective functions are summation of a convex function

and a quadratic function, have attracted a lot of attention [61, 252, 65, 64, 253, 69]. Mai and

Johansson [69] provided novel theoretical guarantees on the convergence of stochastic gradient

descent with momentum for weakly-convex functions. However, in our experiments in Sec. 6.4, we
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show that model-based methods considerably outperform these stochastic gradient methods with

momentum.

Our approach falls under the class of prox-linear methods [61, 252, 63, 65, 64, 253],

that solve problems where the objective is a composition of a non-smooth convex function and a

smooth function, exactly as in Prob. (6.3). Such methods iteratively minimize the composition of

the non-smooth function with the first-order approximation of the smooth function [61, 252, 65, 64].

Lewis and Wright [61] prove convergence to a stationary point while Drusvyatskiy et al. prove linear

convergence [63] and obtain sample complexity guarantees [65]. Ochs et al. [66, 254] generalize

prox-linear methods by proposing Model-Based Optimization (MBO) for both smooth and non-

smooth non-convex problems. MBO reduces to a prox-linear method when the objective has a

composite form, as in our case. Ochs et al. further considered non-quadratic proximal penalties in

sub-problems and complemented MBO with an Armijo-like line search. We leverage both their

line search and theoretical guarantees (c.f. Prop. 6.2.0.1); our main technical departure is in solving

sub-problems per iteration via SADM, which we discuss next.

6.2.1 MBO

We now outline how non-smooth, non-convex Prob. (6.3) can be solved via model-based

optimization (MBO) [66]. MBO relies on the use of a model function, which is a convex approxima-

tion of the main objective. In short, the algorithm proceeds iteratively, approximating function F (·; ·)
by it’s 1st order Taylor expansion at each iteration. This approximation is affine in θ, and results in a

convex optimization problem per iteration.

In more detail, cast into our setting, MBO proceeds as follows. Starting with a feasible

solution θ0 ∈ C, it performs the following operations in each step k ∈ N:

θ̃k = arg min
θ

Fθk(θ) +
h

2
‖θ − θk‖22, (6.6a)

θk+1 = (1− ηk)θk + ηkθ̃k, (6.6b)

where h > 0 is a regularization parameter, ηk > 0 is a step size, and function Fθk : Rd → R is the

so-called model function at θk, defined as:

Fθk(θ) ,
1

n

∑
i∈[n]

‖F (θk;xi) + DFi(θ
k)(θ − θk)‖p + g(θ) + χC(θ), (6.7)
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Algorithm 11 Model-based Minimization (MBO)
1: Input: Initial solution θ0 ∈ domF , iteration number K set δ, γ ∈ (0, 1), and η̃ > 0

2: for k ∈ [K] do

3: θ̃k := arg minθ Fθk(θ) + h
2‖θ − θ

k‖22
4: Find γk via Armijo search rule

5: θk+1 := (1− ηk)θk + ηkθ̃k

6: end for

where DFi(θ) ∈ RN×d is the Jacobian of F (θ;xi) w.r.t. θ. Put differently, in each step, MBO

minimizes the 1st-order Taylor approximation augmented with a proximal penalty; the resulting θ̃k

is interpolated with the current solution θk. The above steps are summarized in Alg. 11.

Ochs et al. [66] allows to use more general Bregman divergences for the second term (c.f.

Sec. 5.2 of [66]). The specific model functions we study fall under Example 5.3 in [66] (see also

[61, 64].) Moreover, Ochs et al. allow (6.6a) to be solved inexactly; at each iteration, the solution θ̃k

only needs to improve the model function value by, i.e.,

∆k , Fθk(θ̃k) +
h

2
‖θ̃k − θk‖22 − Fθk(θk) < 0. (6.8)

The step-size ηk is found via an Armijo line search algorithm. In particular, the line search algorithm

finds a step-size, s.t., θk+1 improves the current objective comparable with the model improvement

∆k, i.e.,

1

n

∑
i∈[n]

‖F (θk+1;xi)‖p + g(θk+1)−

 1

n

∑
i∈[n]

‖F (θk;xi)‖p + g(θk)

 ≤ γηk∆k,

where γ ∈ (0, 1) is a hyper-parameter of the linear search algorithm.

The exact Line Search Algorithm from Ochs et al. [66] is summarized in Alg. 12. Note that

Ochs et al. prove that LSA is guaranteed to finish within finite number of iterations. The following

proposition shows asymptotic convergence of MBO to a stationary point using an inexact solver

Proposition 6.2.0.1. (Theorem 4.1 of [66]) Suppose θ∗ is the limit point of the sequence θk generated

by Alg. 11. Assume Fθk(θ̃k) + h
2‖θ̃

k − θk‖22 − inf θ̃ Fθk(θ̃) + h
2‖θ̃ − θ

k‖22 ≤ εk, for all iterations k,

and that εk → 0. Then θ∗ is a stationary point of Prob. (6.3).

Proof. We show that all assumptions for Theorem 4.1 of Ochs et al. [66] are satisfied, therefore

the result holds. We solve convex problems (6.6a) via OADM iterations. Since we established

the O( log T
T ) convergence rate of OADM in Theorem 6.3.1, we can solve (6.6a) with an arbitrary
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Algorithm 12 Line Search Algorithm (LSA)

1: Input: Solutions θk, θ̃k, and parameters δ, γ ∈ (0, 1), η̃ > 0

2: Initialize θ̃ := (1− η̃)θk + η̃θ̃k

3: while 1
n

∑
i∈[n] ‖F (θ̃;xi)‖p + g(θ̃) > 1

n

∑
i∈[n] ‖F (θk;xi)‖p + g(θk) + γη̃

[
Fθk(θ̃k) − Fθk(θk) +

h
2 ‖θ̃

k − θk‖22
]

do

4: Set η̃ := δη̃

5: Set θ̃ := (1− η̃)θk + η̃θ̃k

6: end while

7: Return: η̃

accuracy ε, which goes to zero for T →∞; therefore, Assumption 4.1 of [66] is satisfied. Moreover,

due to the choice of the Euclidean norm as our Bergman distance function, Assumption 4.2 of

[66] is satisfied (see Section 5 of [66]). Finally, our model function (6.7) is precisely Example 5.3

in [66]; it is written as the form f0 + h ◦ F, where f0(θ) = χC(θ) + g(θ), h(F) = ‖F‖p,1, and

F : Rd → Rn×N . Therefore, Assumption 4.3 is also satisfied. In addition, the domain of Euclidean

distance is Rn, which implies that Condition (ii) in Theorem 4.1 of [66] is satisfied for any limit

point. Thus, all the conditions in Theorem 4.1 of Ochs et al. are satisfied, and every limit point of

Alg. 11 is a stationary point.

Problem (6.6a) is convex but still non-smooth; we discuss how it can be solved efficiently

via SADM in the next section.

6.3 Stochastic Alternating Direction Method of Multipliers

After dealing with convexity via MBO, there are still two challenges behind solving the

constituent sub-problem (6.6a). The first is the non-smoothness of ‖ · ‖p; the second is scaling in n,

which calls for a the use of a stochastic optimization method, akin to SGD (which, however, is not

applicable due to the lack of smoothness). We address both through the a novel approach, namely,

SADM, which is a stochastic version of the OADM algorithm by Wang and Banerjee [67, 255]. Most

importantly, our approach reduces the solution of Prob. (6.6a) to several gradient-free optimization

sub-steps, which can be computed efficiently. In addition, using an SADM/ADMM variant comes

with clear stopping criteria, which is challenging for traditional stochastic subgradient methods [69].
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6.3.1 OADM

The Alternating Direction Method of Multipliers (ADMM) [13] is a convex optimization

algorithm that provides efficient methods for non-smooth problems. Applying ADMM often results

in sub-problems that can be solved efficiently via proximal operators [13, 256, 257]. To speed up

ADMM, stochastic variants [258, 259, 260] have been proposed for minimizing sum-like objectives.

These stochastic variants, similar to SGD, update solutions using the gradients of a small batch of

terms in the objective, at each iteration. Another group of works proposed online variants of ADMM

[67, 261, 262]. In these variants, the goal is to minimize the summation of loss functions that are

revealed by an adversary.

Wang and Banerjee [67] proposed the first online variant of ADMM, as Online Direction

Method of Multipliers (OADM). Here, we propose a stochastic version of OADM, Stochastic

Alternating Direction Method (SADM), for solving inner-problems in MBO iterations. SADM is

similar to OADM with the difference that functions are sampled uniformly at random and are not

given by an adversary. We prove that SADM converges with a O(log T/T ) rate when the regularizer

is strongly convex. Other existing stochastic or online ADMM variants either require a smooth

objective [258, 259] or bounded sub-gradients [260, 261], neither of which apply for the inner-

problems we solve. In contrast, we show that the subsequent steps of SADM admit gradient-free

efficient solutions due to a bi-section method for finding proximal operators of `p norms [68, 20].

6.3.2 SADM

We first describe how our SADM can be applied to solve Prob. (6.6a). We introduce the

following notation to make our exposition more concise:

F (k)(θ;xi) , ‖F (θk;xi) + DFi(θ
k)(θ − θk)‖p +

h

2
‖θ − θk‖22, (6.9a)

F (k)(θ) ,
1

n

∑
i∈[n]

F (k)(θ,xi), (6.9b)

G(θ) , g(θ) + χC(θ). (6.9c)

We can then rewrite Prob. (6.6a) as the following equivalent problem:

Minimize F (k)(θ1) +G(θ2) (6.10a)

subject to: θ1 = θ2, (6.10b)

where θ1, θ2 ∈ Rd are auxiliary variables.
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Note that the objective in (6.10a) is equivalent to F (k)(θ1) + G(θ2). SADM starts with

initial solutions, i.e., θ0
1 = θ0

2 = u0 = 0. At the t-th iteration, the algorithm performs the following

steps:

θt+1
1 := arg min

θ1

F (k)(θ1;xt) +
ρt
2
‖θ1 − θt2 + ut‖22 +

γt
2
‖θ1 − θt1‖22, (6.11a)

θt+1
2 := arg min

θ2

G(θ2) +
ρt
2
‖θt+1

1 − θ2 + ut‖22, (6.11b)

ut+1 :=ut + θt+1
1 − θt+1

2 , (6.11c)

where variables xt are sampled uniformly at random from {xi}ni=1, ut ∈ Rd is the dual variable, the

ρt, γt > 0 are scaling coefficients at the t-th iteration. We explain how to set ρt, γt in Thm. 6.3.1.

The solution to Problem (6.11b) amounts to finding the proximal operator of function G.

In general, given that g is smooth and convex, this is a strongly convex optimization problem and

can be solved via standard techniques. Nevertheless, for several of the practical cases we described

in Sec. 6.1 this optimization can be done efficiently with gradient-free methods. For example, in

the case where the regularizer g is the either a ridge or lasso penalty, and C = Rd, is is well-known

that proximal operators for `1 and `2 norms have closed-form solutions [13]. For general `p norms,

the efficient (gradient-free) bi-section method due to Liu and Ye [68], which we introduced in

the previous chapter (see Sec. 5.3.2) can be used to compute the proximal operator. Moreover, in

the absence of the regularizer, the proximal operator for the indicator function χC is equivalent to

projection on the convex set C. This again has closed-form solution, e.g., when C is the simplex [242]

or an `p-norm ball [231, 68].

Problem (6.11a) is harder to solve; we show however that it can also reduced to the

(gradient-free) bi-section method due to Liu and Ye [68] in the next section.

6.3.3 Inner ADMM

We solve Problem (6.11a) using another application of ADMM. In particular, note that

(6.11a) assumes the following general form:

min
x

‖Ax + b‖p + λ‖x− c‖22, (6.12)

where A = DFt(θ
(k)), the constituent parameter vectors are c = ρt

ρt+γt+h
(θt2 − ut) + γt

ρt+γt+h
θt1 +

h
ρt+γt+h

θ(k),b = F (θ(k);xt)−DFt(θ
(k))θ(k), and λ = ρt+γt+h

2 .
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We solve (6.12) via ADMM by reformulating it as the following problem:

min ‖y‖p + λ‖x− c‖22 (6.13a)

s.t Ax + b− y = 0. (6.13b)

The ADMM steps at the k-th iteration for (6.13) are the following:

yk+1 := arg min
y

‖y‖p + ρ′/2‖y −Axk − b + zk‖22 (6.14a)

xk+1 := arg min
x

λ‖x− c‖22 + ρ′/2‖yk+1 −Ax− b + zk‖22 (6.14b)

zk+1 := zk + yk+1 −Axk+1 − b, (6.14c)

where zk ∈ RN denotes the dual variable at the k-th iteration and ρ′ > 0 is a hyper-parameter of

ADMM.

Problem (6.14a) is again equivalent to computing the proximal operator of the p-norm,

which, as mentioned earlier, has closed-form solution for p = 1, 2. Moreover, for general `p-

norms the proximal operator can be computed via the bi-section algorithm by Liu and Ye [68].

This bi-section method yields a solution with an ε accuracy in O(log2(1/ε)) rounds [20, 68] (see

Sec. 5.3.2).

6.3.4 Convergence

To attain the convergence guarantee of MBO given by Proposition 6.2.0.1, we need to

solve the inner problem (6.8) within accuracy εk at iteration k, where εk → 0. As our major technical

contribution, we ensure this by proving the convergence of SADM when solving Prob. (6.8).

Consider the sequence {θt1, θt2,ut}Tt=1 generated by our SADM algorithm (6.11), where

xt, t ∈ [T ], are sampled u.a.r. from {xi}ni=1.. Let also

θ̄T1 ,
1

T

T∑
t=1

θt1, θ̄
T
2 ,

1

T

T∑
t=1

θt+1
2 , (6.15)

denote the time averages of the two solutions. Let also θ∗ = θ∗1 = θ∗2 be the optimal solution of

Prob. (6.10). Finally, denote by

RT , F (k)(θ̄T1 ) +G(θ̄T2 )− F (k)(θ∗)−G(θ∗) (6.16)

the residual error of the objective from the optimal.

Then, the following theorem holds:
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Theorem 6.3.1. Assume that C is convex, closed, and bounded, and that g(0) = 0, g(θ) ≥ 0, and

g(·) is both Lipschitz continuous and β-strongly convex over C. Moreover, assume that both the

function F (θ;xi) and its Jacobian DFi(θ) are bounded on the set C, for all i ∈ [n]. We set γt = ht

and ρt = βt. Then,

‖θ̄T1 − θ̄T2 ‖22 = O

(
log T

T

)
(6.17a)

E[RT ] = O

(
log T

T

)
(6.17b)

P
(
RT ≥ k1

log T

T
+ k2

M√
T

)
≤ e−

M2

16 for all M > 0, T ≥ 3, (6.17c)

where k1, k2 > 0 are constants (see (6.35) in Sec. 6.3.5 for exact definitions).

We prove Theorem 6.3.1 next in Sec. 6.3.5. The theorem has the following important

consequences. First, (6.17a) implies that the infeasibility gap between θ1 and θ2 decreases asO( log T
T )

deterministically. Second, by (6.17b) the residual error RT decreases as O( log T
T ) in expectation.

Finally, (6.17c) shows that the tail of the residual error as iterations increases is exponentially

bounded. In particular, given a desirable accuracy εk, (6.17c) gives the number of iterations necessary

be within εk of the optimal with any probability 1− δ. Therefore, according to Proposition 6.2.0.1,

using SADM will result in convergence of Algorithm 11 with high probability. Finally, we note

that, although we write Theorem 6.3.1 for updates using only one random sample per iteration, the

analysis and guarantees readily extend to the case where a batch selected u.a.r. is used instead. More

formally, we have the following:

Corollary 6.3.1.1. (Batch Setting) Assume the assumptions of Theorem 6.3.1 and let the sequence

{θt1, θt2,ut}, t ∈ [T ] be generated by OADM algorithm, i.e., (6.11), where the step (6.11a) is replaced

with the following step:

θt+1
1 := arg min

θ1

1

J

J∑
j=1

F (k)(θ1;xjt ) +
ρ

2
‖θ1 − θt2 + ut‖22 +

γ

2
‖θ1 − θt1‖22, (6.18)

where at each iteration t ∈ [T ], the points xjt ∈ {x1, . . . ,xn} are i.i.d. samples drawn uniformly at

random. Then all the results of Theorem 6.3.1 in (6.17) hold.

Proof. We only need to adapt the definition in (6.9a) to this batch setting as follows: (6.9a) as follows

F (k)(θ; [xj ]j∈[J ]) ,
1

J

J∑
j=1

Fθ(k)(θ,x
j) +

h

2
‖θ − θ(k)‖22. (6.19)

Then all the results follow similar to the proof presented in Sec. 6.3.5.
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6.3.5 Proof of Theorem 6.3.1

Since we assume that the constraint set C is convex, closed, and bounded, we take the

diameter of the set C to be

DC = max
θ1,θ2∈C

‖θ1 − θ2‖2. (6.20)

In addition, since function F and its Jacobian DFi(θ) are bounded on the set X , for all i ∈ [n], there

exist MF ,MD <∞, s.t.,

‖F (θ;x)‖∞ ≤MF ∀θ ∈ C,x ∈ {x1, . . . ,xn} (6.21a)

‖DFi(θ)‖∞ ≤MD ∀θ ∈ C, i ∈ [n]. (6.21b)

We now paraphrase Theorem 6 of [255] as the following lemma.

Lemma 6.3.2 (Theorem 6 in [255]). If the assumptions of Theorem 6.3.1 hold, for the sequence

{θt1, θt2,ut}, t ∈ [T ] generated by OADM algorithm for any sequence of the variables xt ∈
{x1, . . . ,xn}, t ∈ [T ] the following holds

T∑
t=1

(
F (k)(θt1;xt) +G(θt+1

2 )
)
−

T∑
t=1

(
F (k)(θ∗;xt) +G(θ∗)

)
≤ (N1/pdMD + hDC)

2

2h
log(T + 1) +

β + h

2
D2
C (6.22a)

T∑
t=1

‖θt+1
1 − θt+1

2 ‖22 + ‖θt+1
2 − θt2‖22

≤ 2

β
(
√
dMG + hDC + LG) log(T + 1) + (1 +

h

β
)D2
C , (6.22b)

where θ∗ = θ∗1 = θ∗2 is the optimal solution for (6.10), and LG is the Lipschitz coefficient for g(·),

and MG , N1/p
√
dMD.

Proof. We show that Assumption 3 of [255] is satisfied, thus the results follow from Theorem 6 of

[255]. For case (a), we need to show that the subgradient of the functions F (k)(θ;xt) are bounded.
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For any subgradient g ∈ ∂
(
‖F (θ(k);xt) + D

(k)
t (θ − θ(k))‖p

)
and for all θ ∈ Rd, we have

g>(θ − θ1) ≤ ‖F (θ(k);xt) + D
(k)
t (θ − θ(k))‖p − ‖F (θ(k);xt) + D

(k)
t (θ1 − θ(k))‖p

≤ ‖D(k)
t (θ − θ1)‖p

=

(
N∑
i=1

|D>i (θ − θ1)|p
)1/p

Cauchy Schwarz Ineq.

≤

(
N∑
i=1

(‖Di‖2‖θ − θ1‖2)p

)1/p

(6.21b)
≤ N1/p

√
dMD‖θ − θ1‖ = MG‖θ − θ1‖,

where Di is the i-th row of D(k)
t . Now given that the above holds for all θ, we can show that for every

element i ∈ [d], gi is bounded by MG; to see this set θ = θ1 + ei and it follows that gi ≤MG. We

therefore conclude that the subgradients ∂F (k)(θ, ζt) = {g+h(θ− θ(k))|g ∈ ∂Fθ(k)(θ1, ζt)}, θ ∈ C
are bounded:

‖gF ‖2 = ‖g + h(θ − θ(k))‖2 ≤ ‖g‖2 + h‖(θ − θ(k))‖2

≤
√
dMG + hDC ∀gF ∈ ∂F (k)(θ;xt), (6.23)

where the last inequality is due to the fact that DC = maxθ1,θ2∈C ‖θ1 − θ2‖2.
Case (b) is satisfied with the choice of `2 norm squared for Bregman distance, i.e., the

term γ‖θ1 − θt1‖22. Since we assumed the constraint set C is convex, closed and bounded, we take the

diameter of the set C to be

DC = max
θ1,θ2∈C

‖θ1 − θ2‖2.

Thus, case (c) is satisfied as a result of initialization (θ1
1 = θ1

2 = u1 = 0), and the fact that

‖θ1
1 − θ∗‖2 ≤ DC and ‖θ1

2 − θ∗‖2 ≤ DC . Case (d) is directly included in the assumption of

Theorem 6.3.1. Finally, for Case (e) we have∣∣∣F (k)(θt+1
1 ;xt) +G(θt+1

2 )−
(
F (k)(θ∗;xt) +G(θ∗)

)∣∣∣
≤
∣∣∣F (k)(θt+1

1 , ζt)− F (k)(θ∗, ζt)|+ |G(θt+1
2 )−G(θ∗)

∣∣∣
(a)
≤ (
√
dMG + hDC)‖θt+1

1 − θ∗‖2 + LG‖θt+1
2 − θ∗‖2+

|χC(θt+1
2 )− χC(θ∗)|

(b)
≤ (
√
dMG + hDC + LG)DC ,
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where we derive (a) using the Lipschitz continuity of g(·) along with Lemma 2.6 from [263], which

states that F (k) is Lipschitz continuous if and only if some `p norm of its subgradients is bounded

(that we showed in (6.23)). Moreover, in deriving (b) we use the fact that the constraint set C is

convex, closed, and bounded, and that χC(θt+1
2 ) = χC(θ

∗) = 0, as θt+1
2 , θ∗ ∈ C. So far we have

shown that all cases in Assumption 3 of [255] are satisfied. Also, both F (k) and G are h and β

strongly convex, respectively; the former is due to the quadratic term and the latter is explicitly stated

in our assumptions. Therefore, we have shown that all assumptions in Theorem 6 [255] are satisfied

and the results in (6.22) follow from the theorem.

From (6.22b) we obtain the following

T∑
t=1

‖θt1 − θt2‖22 = O(log T ) (6.24a)

T∑
t=1

‖θt+1
2 − θt2‖22 = O(log T ). (6.24b)

Now we derive the result

‖θ̄T1 − θ̄T2 ‖22 = ‖ 1

T

T∑
t=1

(θt1 − θt+1
2 )‖22

= ‖ 1

T

T∑
t=1

(θt1 − θt2 + θt2 − θt+1
2 )‖22

≤ ‖ 2

T

T∑
t=1

(θt1 − θt2)‖22 + ‖ 2

T

T∑
t=1

(θt2 − θt+1
2 )‖22

≤ 2

T

T∑
t=1

‖θt1 − θt2‖22 +
2

T

T∑
t=1

‖θt2 − θt+1
2 ‖22

(6.24)
= O(

log T

T
),

where in deriving the first inequality we have used the fact that

‖x + y‖22 ≤ 2‖x‖22 + 2‖y‖22 ∀x,y ∈ Rd.

Now we prove the second part of theorem about the optimality of solutions. Using
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convexity of F (k) and G we have that

F (k)(θ̄T1 ) +G(θ̄T2 )− F (k)(θ∗)−G(θ∗)

≤ 1

T

T∑
t=1

(
F (k)(θt1)− F (k)(θ∗) +G(θt+1

2 )−G(θ∗)
)

=
1

T

T∑
t=1

(
F (k)(θt1;xt)− F (k)(θ∗;xt) +G(θt+1

2 )−G(θ∗)
)

+
1

T

T∑
t=1

(
F (k)(θt1)− F (k)(θt1;xt)− F (k)(θ∗) + F (k)(θ∗;xt)

)
(6.22a)
≤ (N1/pdMD + hDC)

2

2hT
log(T + 1) +

β + h

2T
D2
C +

1

T

T∑
t=1

δt, (6.25)

where the first inequality is due to the Jensen’s inequality and

δt , F
(k)(θt1)− F (k)(θt1;xt)− F (k)(θ∗) + F (k)(θ∗;xt).

As the variables xt and θt1 are independent, we have

E[δt|x1, . . .xt−1]

= E
[
F (k)(θt1)− F (k)(θt1;xt)− F (k)(θ∗) + F (k)(θ∗;xt)|x1, . . .xt−1

]
= 0.

Therefore, we obtain

E
xt,t∈[T ]

[δt] = 0. (6.26)

Now taking expectations of both sides of (6.25) w.r.t. the sequence ζt, t ∈ [T ] and noting (6.26) we

have that:

E
xt,t∈[T ]

[
F (k)(θ̄T1 ) +G(θ̄T2 )− F (k)(θ∗)−G(θ∗)

]
≤ (N1/pdMD + hDC)

2

2hT
log(T + 1) +

β + h

2T
D2
C

= O(
log T

T
)

147



CHAPTER 6. ROBUST REGRESSION VIA MODEL BASED OPTIMIZATION

We first derive the following for all θ ∈ C,xi ∈ {x1, . . . ,xn}:

|F (k)(θ)− F (k)(θ;xi)|

=

∣∣∣∣∣∣Fθ(k)(θ;xi)−
1

n

n∑
j=1

Fθ(k)(θ;xj)

∣∣∣∣∣∣
≤ 1

n

∑
j 6=i

|Fθ(k)(θ;xi)− Fθ(k)(θ;xj)|

=
1

n

∑
j 6=i

∣∣ ‖F (θ(k);xi) + DFi(θ
(k))(θ − θ(k)))‖p

− ‖F (θ(k);xj) + DFj (θ(k))(θ − θ(k))‖p
∣∣

≤ 1

n

∑
j 6=i

‖F (θ(k);xi) + DFi(θ
(k))(θ − θ(k)))− F (θ(k);xj) + DFj (θ(k))(θ − θ(k))‖p

≤ 1

n

∑
j 6=i

‖F (θ(k);xi)− F (θ(k);xj)‖p +
1

n

∑
j 6=i

∥∥∥(DFi
(θ(k))−DFj

(θ(k))
)

(θ − θ(k))
∥∥∥
p

(6.21a)
≤ p
√
NMF +

1

n

∑
j 6=i

(
N∑
i′=1

∣∣ (DFi(θ
(k))−DFj (θ(k))

)>
i′

(θ − θ(k))
∣∣|p)1/p

≤ p
√
NMF +

1

n

∑
j 6=i

(
N∑
i′=1

(∥∥∥(DFi
(θ(k))−DFj

(θ(k))
)
i′

∥∥∥
2
‖θ − θ(k)‖2

)p)1/p

(6.21b),(6.20)
≤ p

√
NMF +

p
√
N
√
dMDDC . (6.27)

In order to show the rest of the results we first show that the variance of δt are bounded for

all t ∈ [T ]

δ2
t =

(
F (k)(θt1)− F (k)(θt1, ζt)− F (k)(θ∗) + F (k)(θ∗;xt)

)2

≤ 2
(
F (k)(θt1)− F (k)(θt1;xt)

)2
+ 2

(
−F (k)(θ∗) + F (k)(θ∗;xt)

)2

(6.27)
≤ 4

(
p
√
NMF +

p
√
N
√
dMDDX

)2

≡ σ2. (6.28)

From (6.28) it is obvious that (
δ2
t

σ2

)
≤ exp(1) ∀t ∈ [T ]. (6.29)

Now we show that the following holds

E[exp(αδt)|x1, . . . ,xt−1] ≤ exp(α2σ2) ∀α > 0. (6.30)
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To show (6.30), we follow results from [264]; similar to them, we use the fact that exp(x) ≤
x+ exp(x2). Then we have that

E[exp(αδt)|x1, . . . ,xt−1] ≤ E[exp(α2δ2
t )|x1, . . . ,xt−1]

= E

[(
exp(

δ2
t

σ2
)

)α2σ2 ∣∣ x1, . . . ,xt−1

]
(6.29)
≤ exp(α2σ2)

Now for the sum
∑T

t=1 δt we have that

E

[
exp(α

T∑
t=1

δt)

]
= E

[
exp(α

T−1∑
t=1

δt) exp(αδT )

]

= E
x1,...,xT−1

[
exp(α

T−1∑
t=1

δt) E
xT

[αδT |x1, . . . ,xT−1]

]
(6.30)
≤ exp(α2σ2)E

[
exp(α

T−1∑
t=1

δt)

]
. (6.31)

Having (6.31) for all T and E[exp(αδ1)] ≤ exp(α2σ2) by induction we obtain that:

E

[
exp(α

T∑
t=1

δt)

]
≤ exp(Tα2σ2). (6.32)

Now applying the Markov’s inequality we have that for all α > 0,Mδ:

p(
T∑
t=1

δt ≥Mδ) ≤
E
[
exp(α

∑T
t=1 δt)

]
exp(αMδ)

(6.32)
≤ exp(Tα2σ2)

exp(αMδ)
. (6.33)

Now for deriving bounds for our solution we have that for any M > 0:

P

(
F (k)(θ̄T1 ) +G(θ̄T2 )− F (k)(θ∗)−G(θ∗) ≥ (N1/pdMD + hDC)

2

2hT
log(T + 1) +

β + h

2T
D2
C +

M√
T

)
(6.25)
≤ P

(
1

T

T∑
t=1

δt ≥
M√
T

)

= P

(
T∑
t=1

δt ≥Mσ
√
T

)
(6.33)
≤ exp

(
−M

2

4

)
, (6.34)
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where for deriving the last inequality we set Mδ = Mσ
√
T and α = M

2σ
√
T

in (6.33). Eq. (6.34) is

equivalent to (6.17c), where we set

k1 , max

(
(N1/pdMD + hDC)

2 log(3)

2h log(2)
,
β + h

2
D2
C

)
(6.35a)

k2 ,M. (6.35b)

6.4 Experiments

Algorithms. We run two variants of MBO; the first one, which we call MBOSADM, uses SADM (see

Sec. 6.3) for solving the inner problems (6.6a). The second one, which we call MBOSGD, solves inner

problems via a sub-gradient method. We also apply stochastic gradient descent with momentum

directly to Prob. (6.3); we refer to this algorithm as SGD. This corresponds to the algorithm by [69],

applied to our setting. We also solve the problem instances with an MSE objective using SGD, as the

MSE is smooth and SGD is efficient in this case. Details about hyperparameters are given below.

For all algorithms we use a batch size of 8; we avoid using larger batch sizes as the

computation time increases. Additional details and stopping criteria used for each algorithm are as

follows:

• MBOSADM: We run Alg. 11 for 20 iterations, however we stop earlier if we do no see an

improvement in the objective. In the k-th iteration of Alg. 11, for solving the sub-problems

(Line 3), we run iterations of SADM (6.11) for a maximum of 200 rounds or until the primal

and dual residuals are less then 0.95kε, where we set ε = 0.1 and 0.001 for training auto-

encoders and multi-target regression, respectively.

• MBOSGD: Again, we run Alg. 11 for 20 iterations and stop earlier if the objective does not

improve. For solving the sub-problems (Line 3), we run the stochastic gradient descent (SGD)

with the learning rate of 10−5 and 10−3, respectively, for training auto-encoders and multi-

target regression. In all cases we set the momentum parameter to 0.9 and run SGD for 500

iterations.

• SGD: We run the stochastic gradient descent (SGD) algorithm with momentum with the

learning rate of 10−6 and the momentum parameter set to 0.9. This corresponds to the

algorithm by Mai and Johanssen [69] applied to our setting. We run SGD for 103 and 104

iterations for training auto-encoders and multi-target regression, respectively; we observe that
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MBOSADM MBOSGD SGD

Pout p FNOUTL FOBJ FTEST T (h) T∗(h) FNOUTL FOBJ FTEST T (h) T∗(h) FNOUTL FOBJ FTEST T (h)

MNIST

0.0 2.0 2.50 2.51 2.50 5.69 0.14 8.08 8.08 8.12 64.17 6.47 9.21 9.22 9.30 9.83

0.0 1.5 2.63 2.63 2.63 11.67 0.79 20.19 20.20 20.39 65.67 59.98 20.35 20.36 20.57 14.71

0.0 1.0 3.46 3.47 3.44 17.82 3.09 102.79 102.80 104.24 81.53 NA 102.44 102.46 103.89 11.50

0.05 2.0 3.48 5.35 3.46 6.33 0.31 3.89 6.36 3.86 54.92 38.31 8.03 12.52 8.09 13.96

0.05 1.5 4.10 9.74 4.08 45.32 2.08 5.86 11.70 5.82 57.03 25.12 20.34 34.69 20.57 14.60

0.05 1.0 5.23 20.20 5.24 44.03 5.61 27.68 73.53 27.56 32.76 9.67 102.40 236.43 103.90 11.70

0.1 2.0 4.27 7.77 4.23 11.67 1.34 3.56 7.83 3.54 64.20 33.70 7.02 11.64 7.04 13.97

0.1 1.5 4.18 11.84 4.17 68.74 0.29 5.50 13.77 5.45 67.04 9.88 20.34 48.79 20.57 14.04

0.1 1.0 5.90 36.02 5.92 37.73 8.20 30.08 109.79 30.16 39.77 6.72 102.36 368.22 103.90 11.81

0.2 2.0 4.07 8.97 4.04 51.69 4.39 3.54 8.23 3.52 57.08 19.19 7.48 16.44 7.51 14.25

0.2 1.5 3.90 11.58 3.89 195.69 1.56 7.00 20.63 6.95 45.46 6.44 20.36 77.78 20.59 15.06

0.2 1.0 3.85 28.25 3.83 36.98 5.15 40.12 224.47 40.11 19.71 2.13 102.37 639.32 103.90 8.25

0.3 2.0 3.99 14.21 3.98 9.83 4.93 4.02 10.55 3.99 55.60 24.14 7.46 20.63 7.48 13.53

0.3 1.5 20.55 22.56 20.78 159.92 39.24 7.22 24.30 7.16 42.65 15.09 23.90 58.52 23.89 16.25

0.3 1.0 102.70 99.36 104.27 51.48 0.87 56.60 438.89 56.17 20.48 3.32 102.34 910.68 103.90 8.52

Fashion-MNIST

0.0 2.0 3.51 3.51 3.51 4.33 0.31 5.01 5.01 5.01 42.13 14.80 8.72 8.73 8.70 9.78

0.0 1.5 6.13 6.14 6.14 14.35 2.18 8.87 8.88 8.89 63.39 12.80 22.62 22.63 22.56 14.70

0.0 1.0 10.59 10.61 10.56 29.69 2.63 41.24 41.26 41.35 50.41 3.32 224.26 224.28 224.89 9.72

0.05 2.0 3.80 5.82 3.80 14.70 1.40 4.53 6.75 4.54 67.29 19.15 8.30 11.98 8.27 9.71

0.05 1.5 7.38 14.57 7.40 96.73 2.56 7.91 11.97 7.93 64.25 16.16 20.88 27.22 20.83 10.94

0.05 1.0 16.64 30.51 16.68 43.55 16.04 65.01 109.94 65.31 29.60 9.70 158.65 227.48 158.27 9.97

0.1 2.0 4.05 6.73 4.06 14.66 2.35 4.28 7.90 4.29 65.06 16.46 8.96 14.35 8.94 13.67

0.1 1.5 11.08 32.69 11.10 20.07 NA 8.46 15.23 8.49 65.78 9.92 17.98 31.41 17.95 10.63

0.1 1.0 9.79 27.96 9.81 35.50 2.43 58.70 126.18 58.90 45.06 2.08 235.02 452.45 234.49 13.32

0.2 2.0 6.07 10.19 6.08 14.25 3.67 4.77 9.28 4.77 69.84 30.16 5.71 14.34 5.71 9.31

0.2 1.5 28.51 53.69 28.49 39.42 NA 10.94 27.12 10.97 39.11 16.09 19.36 42.97 19.36 10.87

0.2 1.0 10.50 27.95 10.50 94.72 6.57 140.00 390.02 140.08 17.03 3.33 204.88 644.99 205.13 14.72

0.3 2.0 6.63 23.18 6.63 32.87 NA 5.84 13.04 5.85 50.52 29.95 7.45 20.12 7.46 13.65

0.3 1.5 7.08 22.51 7.10 86.27 30.02 11.09 24.73 11.12 52.41 12.08 19.52 58.26 19.56 11.05

0.3 1.0 14.43 50.91 14.46 95.08 19.48 404.77 893.56 404.52 9.51 NA 410.82 522.50 411.84 10.74

SCMD1d

0.0 2.0 2.88 2.88 3.02 1.82 0.12 2.85 2.85 2.99 0.36 0.04 3.62 3.63 3.72 1.37

0.0 1.5 4.23 4.24 4.39 7.22 0.43 4.22 4.23 4.44 0.36 0.04 5.47 5.47 5.60 1.58

0.0 1.0 9.78 9.79 10.18 7.13 0.47 9.86 9.86 10.32 0.37 0.04 12.95 12.95 13.25 1.22

0.05 2.0 2.88 3.13 2.99 2.52 0.13 2.86 3.11 3.00 0.54 0.05 3.64 3.89 3.71 1.31

0.05 1.5 4.23 4.61 4.37 10.23 4.61 4.22 4.59 4.46 0.50 0.05 5.50 5.87 5.61 1.23

0.05 1.0 9.69 10.52 10.09 0.59 0.18 9.86 10.66 10.35 0.51 0.05 13.03 13.87 13.29 1.17

0.1 2.0 2.90 3.41 3.01 2.22 0.13 2.84 3.34 3.00 0.46 0.05 3.63 4.12 3.69 1.30

0.1 1.5 4.23 4.99 4.42 9.42 0.68 4.18 4.90 4.40 0.50 0.05 5.52 6.11 5.62 1.15

0.1 1.0 9.56 10.99 10.18 9.92 0.78 9.77 11.11 10.54 0.54 0.07 13.09 13.72 13.32 1.11

0.2 2.0 2.93 3.90 3.03 1.83 0.95 2.86 3.79 3.02 0.5 0.3 3.63 3.97 3.66 1.15

0.2 1.5 4.23 5.60 4.37 8.17 3.60 4.21 5.48 4.47 0.36 0.2 5.50 5.83 5.56 1.17

0.2 1.0 9.46 11.00 10.04 6.55 1.50 9.82 11.30 10.60 0.45 0.20 13.09 13.38 13.28 1.11

0.3 2.0 2.93 4.32 3.03 1.80 NA 2.85 4.10 3.03 0.46 NA 3.61 3.90 3.64 1.18

0.3 1.5 4.25 6.05 4.44 8.19 NA 4.21 5.73 4.49 0.50 NA 5.43 5.69 5.43 1.18

0.3 1.0 9.53 11.07 10.00 6.44 2.72 9.68 11.05 10.32 0.51 0.28 12.95 13.13 12.96 1.11

Table 6.1: Time and Objective Performance. We report objective and time metrics for algorithms,
under different outlier ratios and different p-norms. We observe from the table that MBOSADM
significantly outperforms other competitors in terms of objective metrics. In terms of running time,
SGD is generally fastest, due to cheap gradient updates. However, we see that the time MBO variants
take to get to the same or better objective value (i.e., T ∗), ware comparable to running time of SGD.

the algorithm achieves its minimum within this number of iterations. At each iteration, SGD

evaluates the objective FOBJ and outputs the solution for the best observed objective.
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Implementation. We implement all the algorithms in Python 3.7 and using the PyTorch backend.

We run all algorithms on CPU machines that have Intel(R) Xeon(R) CPUs (E5-2680 v4) with 2.4GHz

clock speed.

Applications. For both applications, we set the regularizer as g(θ) = 0.001
2 ‖θ‖

2
2 and do not consider

a constraint set, i.e., C = Rd.

• Training Autoencoders. We use a neural network with two convolutional and two de-

convolutional layers; the convolutional layers have 8 and 4 output channels, respectively,

and 3× 3 kernel weights. The de-convolutional layers exactly mirror the convolutional layers.

We do not apply zero padding or dilation for any of the layers and use a convolution step size

of 1. We apply a soft-plus activation function after each layer.

• Multi-target Regression. We use a network with two layers; the first layer is a 1-dimensional

convolutional layer with the kernel size of 3 and no zero padding or dilation and the step size

of 1. The second layer is a fully-connected layer with 278 hidden units and output size of 16

(the target size). We again apply the soft-plus activation after each layer.

Note that we choose soft-plus activation, i.e., a smooth version of the ReLu, to make sure that the

functions F (θ;x) are smooth.

Datasets. For each of the applications we use two datasets:

• Multi-Target Regression. We use SCM1d, from the collection of regression data made

available by [245]. SCM1d1 is a supply chain management dataset comprising 9803 samples

with 280 predictors and 16 targets. We use 80 percent of data for training, i.e., solving (6.3),

and the rest of it as the test set.

• Auto-encoders. We use two well-known datasets MNIST2 and Fashion-MNIST3. They

both have greyscale 28× 28 images with 60,000 training samples and 10,000 testing samples.

MNIST contains handwritten digits with 10 classes and Fashion-MNIST contains images

of clothing items from 10 classes.

Outliers. We denote the outliers ratio with Pout; each datapoint xi, i ∈ [n], is independently

corrupted with outliers with probability Pout. The probability Pout ranges from 0.0 to 0.3 in our

experiments. In particular, we corrupt training samples by replacing them with samples randomly
1http://users.auth.gr/espyromi/mtr/mtr-datasets.zip
2https://pytorch.org/vision/stable/datasets.htm#mnist
3https://pytorch.org/vision/stable/datasets.html#fashion-mnist
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drawn from a Gaussian distribution whose mean is α away from the original data and its standard

deviation equals that of the original dataset. For MNIST and FashionMNIST, we set α to 1.5 times

the original standard deviation, while for SCM1d, we set α to 2.5 times the standard deviation.

Metrics. We evaluate the solution obtained by different algorithms by using the following three

metrics. The first is FOBJ, the regularized objective of Prob. (6.3) evaluated over the training set.

The other two are: FNOUTL ,
∑
i/∈SOUTL ‖F (θ;xi)‖p

n−|SOUTL| , and FTEST ,
∑
i∈STEST ‖F (θ;xi)‖p

|STEST| , where SOUTL,

STEST are the outlier and test sets, respectively. Metric FNOUTL measures the robustness of algorithms

w.r.t. outliers; ideally, FNOUTL should remain unchanged as the fraction of outliers increases. Metric

FTEST evaluates the generalization ability of algorithms on unseen (test) data, which also does not

contain outliers; ideally, FTEST be similar FNOUTL. Moreover, we report total running time (T ) of

all algorithms. For the two variants of MBO, we additionally report the time (T ∗) until the they

reach the optimal value attained by SGD (N/A if never reached). Finally, for autoencoders, we also

use dataset labels to train a logistic regression classifier over latent embeddings, and also report the

prediction accuracy on the test set.

6.4.1 Time and Objective Performance Comparison

We evaluate our algorithms w.r.t. both objective and time metrics, which we report for

different outlier ratios Pout and p-norms in Table 6.1. By comparing objective metrics, we see that

MBOSADM and MBOSGD significantly outperform SGD. SGD achieves a better FOBJ in only 2 out

of 45 cases, i.e., SCM1d dataset for p = 1.5, 2 and Pout = 0.3; however, even for these two cases,

MBOSADM and MBOSGD obtain better FNOUTL and FTEST values. In terms of overall running time T ,

SGD is generally faster than MBOSADM and MBOSGD; this is expected, as each iteration of SGD only

computes the gradient of a mini-batch of terms in the objective, while the other methods need to

solve an inner-problem. Nonetheless, by comparing T ∗, we see that the MBO variants obtain the

same or better objective as SGD in a comparable time. In particular, T ∗ is less than T for SGD in 33

and 15 cases (out of 45) for MBOSADM and MBOSGD, respectively.

Comparing the performance between MBOSADM and MBOSGD, we first note that MBOSADM

has a superior performance w.r.t. all three objective metrics for 25 out of 45 cases. In some cases,

MBOSADM obtains considerably smaller objective values; for example, for MNIST and Pout =

0.0, p = 1, FNOUT is 0.03 of the value obtained by MBOSGD (also see Figures 6.2d and 6.3d). However,

it seems that in the high-outlier setting Pout = 0.3 the performance of MBOSADM deteriorates; this

is mostly due to the fact that the high number of outliers adversely affects the convergence of SADM
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Figure 6.2: A comparison of scalability of the non-outliers loss FNOUT for different p-norms, w.r.t.,
outliers fraction Pout. We normalize values in each figure by the largest observed value, to make
comparisons between different objectives possible. We see that MSE in Figures 6.2a and 6.3a are
drastically affected by outliers and scale with outliers fraction Pout. Other `p norms for different
methods in Figures 6.2b, 6.2c, and 6.2d generally stay unchanged w.r.t. Pout. However, MBOSADM
in the high outlier regime and p = 1, 1.5 performs poorly.

and it takes more iterations to satisfy the desired accuracy.

6.4.2 Robustness Analysis

We further study the robustness of different p-norms and MSE to the presence of outliers.

For brevity, we only report results for MNIST. We show the scaling of FNOUT and FTEST w.r.t. the
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Figure 6.3: A comparison of scalability of the test loss FTEST for different p-norms, w.r.t., outliers
fraction Pout.We normalize values in each figure by the largest observed value, to make comparisons
between different objectives possible. We see that MSE in Figure 6.3a is drastically affected by
outliers and scale with outliers fraction Pout. Other `p norms for different methods in Figures 6.3b,
6.3c, and 6.3d generally stay unchanged w.r.t. Pout. However, MBOSADM in the high outlier regime
and p = 1, 1.5 performs poorly.

fraction Pout in Figures 6.3 and 6.2, respectively, for different norms. To make comparisons between

different objectives interpretable, we normalize all values in each figure by the largest value in that

figure.

By comparing Figures 6.2a and 6.3a, corresponding to MSE, with other plots in Fig. 6.2

and Fig. 6.3, we see that the loss values considerably increase by adding outliers. For other p-norms,
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(f) Fashion-MNIST, p = 1

Figure 6.4: Classification performance for different methods and datasets. We use the embeddings
obtained by auto-encoders trained via different algorithms to train a logistic regression model
for classification. We generally observe that MBOSADM results in higher accuracy on the test
sets. Moreover, we see that MSE is evidently sensitive to outliers, see Figures 6.4a and 6.4d for
Pout ≥ 0.2.

we see that SGD generally stays unchanged, w.r.t. outliers. However, the loss for SGD is higher

than MBO variants. Loss values for MBOSGD also do not increase significantly by adding outliers.

Moreover, we see that, when no outliers are present Pout = 0.0, MBOSGD obtains higher loss values.

MBOSADM generally achieves the lowest loss values and these values again do not increase with

increasing Pout; however, for the highest outliers (Pout = 0.3), the performance of MBOSADM is

considerably worse for p = 1. As we emphasize in Sec. 6.4.1, high number of outliers adversely

affects the convergence of SADM, and hence the poor performance of MBOSADM for Pout = 0.3.

6.4.3 Classification Performance

For autoencoder tasks, we train a logistic regression model, where the input features are

the outputs of the first two convolutional layers used for encoding data. We set the parameters of

the encoder to be the solutions obtained by the respective autoencoder training algorithm. Using the
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Pout p Acc.

MBOSADM MBOSGD SGD

0.0 `22 - - 0.876

0.0 2.0 0.926 0.894 0.868

0.0 1.5 0.930 0.882 0.861

0.0 1.0 0.936 0.904 0.861

0.05 `22 - - 0.928

0.05 2.0 0.925 0.921 0.914

0.05 1.5 0.928 0.929 0.867

0.05 1.0 0.935 0.930 0.863

0.1 `22 - - 0.907

0.1 2.0 0.925 0.924 0.916

0.1 1.5 0.927 0.930 0.877

0.1 1.0 0.935 0.926 0.873

0.2 `22 - - 0.897

0.2 2.0 0.928 0.856 0.914

0.2 1.5 0.928 0.928 0.892

0.2 1.0 0.931 0.931 0.894

0.3 `22 - - 0.867

0.3 2.0 0.923 0.925 0.913

0.3 1.5 0.927 0.929 0.914

0.3 1.0 0.927 0.922 0.918

Table 6.2: Accuracy of the classifiers for MNIST dataset.

encoder output for training sets and the corresponding target labels, we train the logistic regression,

using the `2 regularizer. We train the latter with different regularizer coefficients (0.01, 0.1, and

1.0) and report the best observed accuracy on the test sets in Fig. 6.4. Full experimental results for

MNIST and Fashion-MNIST are reported in Tables 6.2 and 6.3, respectively.

Fig. 6.4 shows the quality of the latent embeddings obtained by different trained autoen-

coders on the downstream classification over MNIST and FashionMNIST. Additional results are

shown in Tables 6.2 and 6.3. We see that MBO variants again outperform SGD. For MNIST, (reported

in Figures 6.4a to 6.4c), we see that MBOSADM for p = 1 obtains the highest accuracy. Moreover,

for Fashion-MNIST (reported in Fig. 6.4d to 6.4f), we observe that again MBOSADM for p = 1

outperforms other methods. We also observe that MSE (reported in Figures 6.4a and 6.4d) are

sensitive to outliers; the accuracy drastically drops for Pout ≥ 0.1. An interesting observations is

that adding outliers causes improvements in the performance of SGD; however, we see that SGD

always results in lower accuracy, except in two cases (Pout = 0.2 in Fig. 6.4b and Pout = 0.3 in

Fig. 6.4e).
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Pout p Acc.

MBOSADM MBOSGD SGD

0.0 `22 - - 0.754

0.0 2.0 0.836 0.824 0.787

0.0 1.5 0.848 0.843 0.793

0.0 1.0 0.853 0.853 0.794

0.05 `22 - - 0.770

0.05 2.0 0.835 0.832 0.806

0.05 1.5 0.841 0.847 0.803

0.05 1.0 0.850 0.847 0.814

0.1 `22 - - 0.806

0.1 2.0 0.835 0.836 0.812

0.1 1.5 0.837 0.846 0.811

0.1 1.0 0.854 0.848 0.783

0.2 `22 - - 0.754

0.2 2.0 0.826 0.832 0.821

0.2 1.5 0.815 0.837 0.815

0.2 1.0 0.849 0.832 0.758

0.3 `22 - - 0.757

0.3 2.0 0.817 0.827 0.823

0.3 1.5 0.838 0.837 0.826

0.3 1.0 0.846 0.819 0.783

Table 6.3: Accuracy of the classifiers for Fashion-MNIST dataset.

6.5 Conclusion

We present a generic class of robust formulations that includes many applications, i.e., auto-

encoders, multi-target regression, and matrix factorization. We show that SADM, in combination with

MBO, provides efficient solutions for our class of robust problems. Studying other proximal measures

described by Ochs et al. [66] is an open area. Moreover, characterizing the sample complexity of

our proposed method for obtaining a stationary point, as in MBO variants that use gradient methods

[65, 64], is an interesting future direction.
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[47] W. Waegeman, K. Dembczyński, and E. Hüllermeier, “Multi-target prediction: a unifying

view on problems and methods,” Data Mining and Knowledge Discovery, vol. 33, no. 2, pp.

293–324, 2019.

[48] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, “Stacked denoising

autoencoders: Learning useful representations in a deep network with a local denoising

criterion,” Journal of machine learning research, vol. 11, no. Dec, pp. 3371–3408, 2010.

[49] C. Ding, D. Zhou, X. He, and H. Zha, “R 1-PCA: rotational invariant l 1-norm principal

component analysis for robust subspace factorization,” in ICML, 2006.

[50] F. Nie, H. Huang, X. Cai, and C. H. Ding, “Efficient and robust feature selection via joint l2,

1-norms minimization,” in NIPS, 2010.

[51] D. Kong, C. Ding, and H. Huang, “Robust nonnegative matrix factorization using l21-norm,”

in Proceedings of the 20th ACM international conference on Information and knowledge

management. ACM, 2011.

[52] Q. Ke and T. Kanade, “Robust l/sub 1/norm factorization in the presence of outliers and missing

data by alternative convex programming,” in 2005 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR’05), vol. 1. IEEE, 2005, pp. 739–746.

[53] M. Qian and C. Zhai, “Robust unsupervised feature selection,” in Twenty-Third International

Joint Conference on Artificial Intelligence, 2013.

[54] L. Du, P. Zhou, L. Shi, H. Wang, M. Fan, W. Wang, and Y.-D. Shen, “Robust multiple

kernel k-means using l21-norm,” in Twenty-Fourth International Joint Conference on Artificial

Intelligence, 2015.

[55] A. Eriksson and A. Van Den Hengel, “Efficient computation of robust low-rank matrix

approximations in the presence of missing data using the l 1 norm,” in 2010 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition. IEEE, 2010, pp. 771–778.

[56] C. Croux and P. Filzmoser, “Robust factorization of a data matrix,” in COMPSTAT. Springer,

1998, pp. 245–250.

[57] N. Kwak, “Principal component analysis based on l1-norm maximization,” IEEE transactions

on pattern analysis and machine intelligence, vol. 30, no. 9, pp. 1672–1680, 2008.

163



BIBLIOGRAPHY

[58] X. Li, Y. Pang, and Y. Yuan, “L1-norm-based 2dpca,” IEEE Transactions on Systems, Man,

and Cybernetics, Part B (Cybernetics), vol. 40, no. 4, pp. 1170–1175, 2010.

[59] A. Baccini, P. Besse, and A. Falguerolles, “A l1-norm pca and a heuristic approach,” Ordinal

and symbolic data analysis, vol. 1, no. 1, pp. 359–368, 1996.

[60] S. Pesme and N. Flammarion, “Online robust regression via sgd on the l1 loss,” in NeurIPS,

2020.

[61] A. S. Lewis and S. J. Wright, “A proximal method for composite minimization,” Mathematical

Programming, vol. 158, no. 1, pp. 501–546, 2016.

[62] D. Davis and B. Grimmer, “Proximally guided stochastic subgradient method for nonsmooth,

nonconvex problems,” SIAM Journal on Optimization, vol. 29, no. 3, pp. 1908–1930, 2019.

[63] D. Drusvyatskiy and A. S. Lewis, “Error bounds, quadratic growth, and linear convergence of

proximal methods,” Mathematics of Operations Research, vol. 43, no. 3, pp. 919–948, 2018.

[64] D. Davis and D. Drusvyatskiy, “Stochastic model-based minimization of weakly convex

functions,” SIAM Journal on Optimization, vol. 29, no. 1, pp. 207–239, 2019.

[65] D. Drusvyatskiy and C. Paquette, “Efficiency of minimizing compositions of convex functions

and smooth maps,” Mathematical Programming, vol. 178, no. 1, pp. 503–558, 2019.

[66] P. Ochs, J. Fadili, and T. Brox, “Non-smooth non-convex bregman minimization: Unification

and new algorithms,” Journal of Optimization Theory and Applications, vol. 181, no. 1, pp.

244–278, 2019.

[67] H. Wang and A. Banerjee, “Online alternating direction method,” in ICML, 2012.

[68] J. Liu and J. Ye, “Efficient l1/lq NormRregularization,” arXiv preprint arXiv:1009.4766, 2010.

[69] V. Mai and M. Johansson, “Convergence of a stochastic gradient method with momentum for

non-smooth non-convex optimization,” in ICML, 2020.

[70] D. P. Bertsekas, Nonlinear programming. Belmont, MA, USA: Athena scientific, 1999.

[71] J. L. W. V. Jensen et al., “Sur les fonctions convexes et les inégalités entre les valeurs
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