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Abstract—We introduce the problem of optimal congestion
control in cache networks, whereby both rate allocations and
content placements are optimized jointly. We formulate this as a
maximization problem with non-convex constraints, and propose
solving this problem via (a) a Lagrangian barrier algorithm and
(b) a convex relaxation. We prove different optimality guarantees
for each of these two algorithms; our proofs exploit the fact
that the non-convex constraints of our problem involve DR-
submodular functions.

Index Terms—Congestion control, caching, rate control, utility
maximization, DR-submadular maximization, non-convex opti-
mization

I. INTRODUCTION

Traffic engineering and congestion control have played a
crucial role in the stability and scalability of communication
networks since the early days of the Internet. They have been
extremely active research areas since the seminal work by
Kelly et al. [1], who studied optimal rate control subject to
link capacity constraints. Formally, given a network G(V, E)
with nodes v ∈ V , links e ∈ E , and flows n ∈ N , Kelly et
al. [1] studied the following convex optimization problem:

max
λ

∑
n∈N Un(λn) (1a)

s.t. ρe(λ) ≤ Ce, ∀e ∈ E , (1b)

where λ = [λn]n∈N ∈ R|n|+ is the vector of rate allocations λn,
n ∈ N across flows, ρe : R|n| → R+, Ce ∈ R+ are the loads
and capacities of links e ∈ E , respectively, and Un : R+ →
R, n ∈ N , are concave utility functions of rates. Motivated
by Kelly et al. [1], distributed congestion control algorithms
solving Prob. (1) are now both numerous and classic [2]–[4].

In this work, we revisit this problem in the context of cache
networks [5]–[7]. Motivated by technologies such as software
defined networks [8] and network function virtualization [9],
nodes in cache networks are no longer merely static routers.
Instead, they are entities capable of storing data, performing
computations, and making decisions. Nodes can thus fetch
user-requested content [10], or perform user-specified compu-
tation tasks [11], [12], instead of simply maintaining point to
point communication sessions. In turn, such functionalities can
address the ever increasing interest in running data-intensive
applications in large-scale networks, such as machine learning
at the edge [13], IoT-enabled health care [14], and scientific
data-intensive computation [15].

Fig. 1: Example of a cache network. N distinct flows of requests enter
the network at node v1. Each flow contains requests for an item i in
a catalog I. Requests are forwarded towards the designated server
that stores all items in I. Upon reaching it, responses carrying the
requested items follow the reverse path towards node v1. However,
all intermediate nodes have caches that can be used to store items
in I. Thus, requests need not traverse the entire path, but can be
satisfied upon the first hit. Hence, the load on link e = (vk+1, vk)
is a function of both rates λ = [λn]Nn=1 as well as cache allocation
decisions made by the intermediate nodes v1, . . . ,vk, to name a few.

Congestion control in such networks is fundamentally dif-
ferent from the classic setting. When nodes can store user-
requested content or provide server functionalities, network
design amounts to determining not only the rate allocations
per flow but also the location of offered network services.
Put differently, to attain optimality, cache allocation decisions
need to be optimized jointly with rate allocation decisions. In
turn, this necessitates the development of novel congestion
control algorithms that take cache allocation into account.
To make this point clear, we illustrate the effect of cache
allocations on congestion in a cache network shown in Fig. 1.
Requests for content items in a catalog I arrive over N
flows on a node on the left of a path network. They are
subsequently forwarded towards a designated server on the
right, that stores all items in I. Upon reaching the server,
responses carrying the requested items are sent back over
the reverse path. Assuming that request traffic is negligible,
the traffic load on an edge is determined by the item (i.e.,
response) traffic flowing through it. However, if intermediate
nodes are equipped with caches that can store some of the
items in I, as in Fig. 1, requests need not be propagated all
the way to the designated server. As a result, the load ρe caused
by items traversing edge e = (vk+1, vk) depends not only on
the rate vector λ = [λn]n∈N ∈ R|n|+ , but also on the cache
allocation decisions made at all nodes v1, . . . , vk preceding e
in the path. For example, the load ρe is zero if all items in I
are stored in nodes v1, . . . , vk.



Formally, in cache networks, Problem (1) becomes:

max
λ,x

∑
n∈N Un(λn) (2a)

s.t. ρe(λ,x) ≤ Ce, ∀e ∈ E , (2b)∑
i∈I xvi ≤ cv, ∀v ∈ V, (2c)

where x = [xvi]v∈V,i∈I ∈ {0, 1}|V||I| is the vector of cache
allocation decisions xvi ∈ {0, 1}, indicating if node v ∈ V
stores i ∈ I, cv ∈ N is the storage capacity of node v ∈ V ,
and λ, ρe, Ce, Un are respectively the rate allocation vector,
loads, link capacities, and utilities, as in Eq. (1). Crucially, the
load ρe on links e ∈ E is a function of both the allocated rates
and cache decisions. As a result, constraints (2b) define a a
non-convex set. This is not just due to the combinatorial nature
of cache allocation decisions x: even if xvi are relaxed to
real values in [0, 1], which corresponds to making probabilistic
cache allocation decisions, the resulting constraint (2b) is still
not convex, and Problem (2) cannot be solved via standard
convex optimization techniques. This is a significant departure
from Problem (1), in which constraints (1b) are linear.

In spite of the challenges posed by the lack of convexity,
we propose algorithms solving Problem 2 with provable ap-
proximation guarantees. Specifically:

1) We provide a unified optimization formulation for con-
gestion control in cache networks, through joint proba-
bilistic content placement and rate control. To the best
of our knowledge, we are the first to study this class
of non-convex problems and develop algorithms with
approximation guarantees.

2) We propose two algorithms, each yielding different ap-
proximation guarantees. The first is a Lagrangian barrier
method; the second is a convex relaxation. In both cases,
we exploit the fact that constraints (2b) can be ex-
pressed in terms of DR-submodular functions [16]. Both
algorithms and their corresponding analysis are novel
and of independent interest, as they may be applicable
for attacking problems with DR-submodular constraints
beyond the cache network setting we consider here.

3) Finally, we implement both methods and compare them
experimentally to greedy algorithms over several real-
world and synthetic topologies, observing an improve-
ment in aggregate utility by as much as 5.43×.

The remainder of this paper is structured as follows. We
review related work in Section II. Our network model and
problem formulation are discussed in Section III. In Sec-
tion IV, we describe our two different methods for solving
the optimal congestion control problem, as well as our per-
formance guarantees. Finally, we present our evaluations in
Section V, and we conclude in Section VI.

II. RELATED WORK

Network Cache Optimization. Studies on optimal in-network
cache allocation are numerous, roughly split into the offline
and online solutions. Several papers study centralized, of-
fline cache optimization in a network modeled as a bipartite

graph [17], [18]. Shanmugam et al. [19] consider a femto-
cell network, where content is placed in caches to reduce
the cost of fetching data from a base station. They do not
consider congestion, and study routing costs that are linear
in the traffic per link. Mahdian et al. [20] model every link
with an M/M/1 queue, and consider objectives that are (non-
linear) functions of the queue sizes. Similarly, Li and Ioannidis
[21] model every link with an M/M/1c queue to capture the
consolidation of identical responses before being forwarded
downstream. The same problem was also studied, albeit in
a different model, by Dehghan et al. [22]. Online cache
allocation algorithms exist, e.g., for maximizing throughput
[11], [23], or minimizing delay [24]. Ioannidis and Yeh [7]
study a similar problem as Shanmugam et al. [19] for networks
with arbitrary topology and linear link costs, seeking cache
allocations that minimize routing costs across multiple hops.

Although we too consider offline algorithms, we depart sub-
stantially from prior work. First, all mentioned papers assume
the input request rates are fixed, whereas we consider joint
cache allocation and rate control. Prior works on allocation
minimizing costs [7], [19]–[22] cast the problem as a sub-
modular maximization problem subject to matroid constraints,
for which a (1−1/e)-approximate solution can be constructed
in polynomial time. Instead, akin to Kelly et al. [1], we treat
loads on links as constraints rather than part of the objective.
Hence, we cannot directly leverage sub-modular maximization
techniques and need to design altogether new algorithms.
Moreover, works which consider congestion [20]–[22] assume
that the system is stable when all caches are empty; in fact,
finding a cache allocation under which the system is stable is
left open. We partially resolve this, jointly finding a rate and
an allocation that ensure stability.
TTL caches. Time-to-Live (TTL) caches providing an elegant
general framework for analyzing cache replacement policies.
In TTL caches, a timer is assigned to each content, and
an eviction occurs upon timer expiration. Multiple studies
analyzed TTL caches as approximations to popular cache
eviction policies (see [6], [25]–[27]). TTL cache optimization
includes maximizing the cache hit rate [28] and the aggregate
utility of cache hits [29]–[31]. In contrast to our approach,
however, works on TTL caching do not provide a solution for
joint cache and rate allocation, and do not guarantee network
stability. Furthermore, they focus on the utility of cache hits,
whereas we consider rate utility, similar to Kelly [1].
Rate admission control in cache networks. Various methods
have been proposed for rate admission control in Content-
Centric Networking (CCN) [32] and Named Data Networking
(NDN) [10] architectures, primarily using congestion feedback
from the network for rate control [33]–[37]. In contrast to our
work, none of these come with optimality guarantees. Closer to
us, Carofiglio et al. [38] fix a cache allocation and maximize
rate utility via rate control; we depart by jointly optimizing
rate and cache allocations.
DR-submodular optimization. Since their introduction by
Bian et al. [16], DR-submodular functions have received
much attention [39]–[41] as examples of functions which



can be maximized with performance guarantees, in spite of
the fact they are not convex. Bian et al. [16] propose a
constant-factor approximation algorithm for (a) maximizing
monotone DR-submodular functions subject to down-closed
convex constraints and (b) maximizing non-monotone DR-
submodular functions subject to box constraints. In a follow-up
paper, Bian et al. [39] provide a constant-factor algorithm for
maximizing non-monotone continuous DR-submodular func-
tions under general down-closed convex constraints. These
works, however, do not consider DR-submodular functions in
constraints, rather than in the objective. In a combinatorial
setting, Crawford et al. [40] and Iyer et al. [41] provide approx-
imate greedy algorithms for minimizing a submodular function
subject to a single threshold constraint involving a submodular
function. None of the above solutions, however, is applicable
to our problem, which involves maximizing a concave function
subject to multiple DR-submodular constraints. To the best of
our knowledge, we are the first to study this problem and
provide solutions with optimality guarantees.

III. SYSTEM MODEL

We consider a network of caches, each capable of storing
items such that the number of stored items cannot exceed
a finite cache capacity. Requests are routed over fixed (and
given) paths and are satisfied upon hitting the first cache that
contains the requested item. Our goal is to determine the (a)
items to be stored at each cache as well as (b) the request
rates, so that the aggregate utility is maximized, subject to both
bandwidth and storage capacity constraints in the network.

A. Network Model

Caches and Items. Following [7], [20], we represent a
network by a directed graph G(V, E). We assume G(V, E)
is symmetric, i.e., (b, a) ∈ E implies that (a, b) ∈ E . There
exists a catalog I of items (e.g., files, or file chunks) of
equal size which network users can request. Each node is
associated with a cache that can store a finite number of
items. We describe cache contents via indicator variables:
xvi ∈ {0, 1} for v ∈ V, i ∈ I, where xvi = 1 indicates
that node v stores item i ∈ I. The total number of items that
a node v ∈ V can store is bounded by its node capacity cv ∈ N
(measured in number of items). More precisely,∑

i∈I xvi ≤ cv for all v ∈ V. (3)

We associate each item i with a fixed set of designated servers
Si ⊆ V , that permanently store i; equivalently, xvi = 1, for
all v ∈ Si. As we discuss below, these act as “caches of last
resort”, and ensure that all items can be eventually retrieved.
Content Requests. Item requests are routed over the network
toward the designated servers. We denote by N the set of all
requests. A request is determined by the item requested and
the path that the request follows. Formally, a request n is a
pair (i, p) where i ∈ I is the requested item and p ⊆ V is
the path to be traversed to serve this request. Path p of length
|p| = K is a sequence of nodes {p1, p2, . . . , pK} ⊆ V , where
(pj , pj+1) ∈ E for all j ∈ [K − 1] , {1, 2, . . . ,K − 1}.

An incoming request (i, p) is routed over the graph G and
follows the path p, until it reaches a node that stores item i.
At that point, a response message is generated, which carries
the requested item. The response is propagated over p in the
reverse direction, i.e., from the node that stores the item, back
to the first node in p, from which the request was generated.
Following [7], [20], we say that a request n = (i, p) is well-
routed if: (a) the path p is simple, i.e., it contains no loops,
(b) the last node in the path is a designated server for i, i.e.,
pK ∈ Si, and (c) no other node in the path is a designated
server node for i, i.e., pk /∈ Si, for k ∈ [K−1]. Without loss of
generality, we assume that all requests in N are well-routed;
note that every well-routed request eventually encounters a
node that contains the item requested.
Bandwidth Capacities. For each link (a, b) ∈ E there exists
a positive and finite link capacity Cab > 0 (measured in
items/sec) indicating the bandwidth available on (a, b). We
denote the vector of link capacities by C ∈ R+

|E|. We
consider two means of controlling the rate of item transmission
on a link, thereby preventing congestion in the network: (a) via
the cache allocation strategy, i.e., by storing the requested item
on a node along the path, which eliminates the flow of item
on upstream links, and (b) via the rate allocation strategy, i.e.,
by controlling the rate with which requests enter the network.
We describe each one in detail below.
Cache Allocation Strategy. We adopt a probabilistic cache
allocation strategy. That is, we partition time into periods of
equal length T > 0. At the beginning of the t-th time period,
each node v ∈ V stores an item i ∈ I independently of other
nodes and other time periods with probability yvi ∈ [0, 1],
i.e., yvi = P{xvi(t) = 1} = E[xvi(t)], for all t > 0, where
xvi(t) = 1 indicates that node v stores item i at the t-th time
period. We denote by Y = [yvi]v∈V,i∈I ∈ [0, 1]|V||I| the cache
allocation strategy vector, satisfying constraints:∑

i∈I yvi ≤ cv for all v ∈ V. (4)

Although condition (4) implies that cache capacity constraints
are satisfied in expectation, it is necessary and sufficient for the
existence of a probabilistic content placement (i.e., a mapping
of items to caches) that satisfies capacity constraints (3) exactly
(see, e.g., [7], [42]). We explain this probabilistic placement
in details in our technical report [43] for completeness.
Rate Allocation Strategy. Our second knob for controlling
congestion is classic rate allocation, as in [1], [38]. That is,
we control the input rate of requests so that the final requests
injected into the network have a rate equal or smaller than
original rates. We refer to the original exogenous arrival rate
of a requests n = (i, p) ∈ N as the demand rate, and denote
it by λ̄n > 0 (in requests per second). We denote the vector of
demand rates by λ̄ = [λ̄n]n∈N . We also denote the admitted
input rate of requests into the network by λn, where

λn ≤ λ̄n, for all n ∈ N . (5)

We refer to the vector λ = [λn]n∈N ∈ R|N |+ as the rate
allocation strategy. We make the following assumptions on



requests admitted into the network: (a) the request process is
stationary and ergodic, (b) a corresponding response message
is eventually created for every admitted request, (c) the net-
work is stable if, for all (b, a) ∈ E , the following holds:

ρ(b,a)(λ,Y ) =
∑

(i,p):(a,b)∈p λ(i,p)

∏a
v=p1

(1− yvi) ≤ Cba. (6)

Using the probabilistic cache allocation scheme, and the fact
that the admitted request process is stationary and ergodic,
ρ(b,a)(λ,Y ) is the expected rate of requests passing through
link (a, b). In particular,

∏a
v=p1

(1 − yvi) is the fraction of
admitted rate λ(i,p) which is forwarded on link (a, b). Since
we have assumed that for each request a response message is
generated, and comes back on the reverse path, the condition
in (6) ensures that the rate of items transmitted on link (b, a)
is less than or equal to the link capacity Cba. If the traffic
rate on a link is greater than the link capacity, the network
becomes unstable. In order for (6) to ensure stability, similar
to [11], [23], in effect we assume that the size of requests
are negligible compared to the size of requested items, and
the load primarily consists of the downstream traffic of items.
Note that the load on edge (b, a) depends both the rate and the
cache allocation strategy, while constraints (6) are non-convex.
System Utility. Consistent with Kelly et al. [1], each request
class n ∈ N is associated with a utility function Un : R+ → R
of the admitted rate λn. The network utility is then the social
welfare, i.e., the sum of all request utilities in the network:

U(λ) =
∑

n∈N Un(λn). (7)

We assume that each function Un is twice continuously differ-
entiable, non-decreasing, and concave for all n ∈ N . Our goal
is to determine a rate allocation strategy λ = [λn]n∈N ∈ R|N |+

and a cache allocation strategy Y = [yvi]v∈V,i∈I ∈ [0, 1]|V||I|

that jointly maximize (7), subject to the constraints (4), (5),
and (6). For technical reasons, we first transform this problem
into an equivalent problem via a change of variables.

B. Problem Formulation

Change of variables. Let the residual rate per request be
rn , λ̄n − λn, for n ∈ N . Given the rate residual strategy
R , [rn]n∈N ∈ R|N |+ , we rewrite the utility as

F (R) , U(λ̄−R) =
∑

n∈N Un(λ̄n − rn). (8)

Under this change of variables, we state our problem as:

UTILITYMAX

maximize F (R) (9a)
subject to (Y ,R) ∈ D1, (9b)

where D1 is the set of points (Y ,R) ∈ R|V||I| × R|N |
satisfying the following constraints1:

gba(Y ,R) ≥
∑

(i,p):(a,b)∈p λ̄(i,p) − Cba, ∀(b, a) ∈ E
(10a)

gv(Y ) ≤ cv, ∀v ∈ V (10b)

1W.l.o.g., we implicitly set yvi = 1, for all v ∈ Si, i ∈ I and do include
these constraints in (10).

0 ≤ yvi ≤ 1, ∀v ∈ V, i ∈ I (10c)
0 ≤ rn ≤ λ̄n, ∀n ∈ N , (10d)

where, for (b, a) ∈ E and v ∈ V , gv(Y ) ,
∑
i∈I yvi, and

gba(Y ,R) ,
∑

(i,p):(a,b)∈p

λ̄(i,p)−(λ̄(i,p)−r(i,p))

a∏
v=p1

(1−yvi). (11)

An important consequence of this change of variables is the
following lemma.

Lemma 1. For all (b, a) ∈ E , functions gba : R|V||I|×R|N | →
R, are monotone DR-submodular.

Proof. Please see Appendix A.

IV. CACHE AND RATE ALLOCATION

The constraint set D1 in Problem (9) is not convex. There-
fore, there is in general no efficient way to find the global
optimum. Here, we propose two algorithms that come with
(different) optimality guarantees. Both algorithms exploit the
fact that the functions gba(·) are DR-submodular functions.

In our first approach, described in Section IV-A, we solve
Problem (9) using a Lagrangian barrier algorithm [44]. We
show that this converges to a Karush-Kuhn-Tucker (KKT)
point (i.e., a point at which KKT necessary conditions for
optimality hold) under mild assumptions. Crucially, and in
contrast to general non-convex problems [44], we provide
guarantees on the objective value at such KKT points. In
particular, we show that the ratio of the objective value
at a KKT point to the global optimum value approaches
1, asymptotically, under an appropriate proportional scaling
of capacities and demand. In Section IV-B, we provide an
alternative solution via convex relaxation of the constraint set
D1. This turns our problem into a convex optimization problem
for which efficient algorithms exist. We show that the solution
obtained by solving the convex problem is feasible, and its
objective value is bounded from below by the optimal value
of another instance of Problem (9) with tighter constraints.

A. Lagrangian Barrier Algorithm for UTILITYMAX

Problem (9) is a maximization problem subject to the
inequality constraints (10a), (10b), and the simple box con-
straints on the variables (10c) and (10d). Due to this structure,
we propose to use the Lagrangian Barrier with Simple Bounds
(LBSB) Algorithm, introduced by Conn et al. [44].
Algorithm description. LBSB defines the Lagrangian barrier
function Ψ(Y ,R,µ,γ, s), given by:

F (R) +
∑

(b,a)∈E

µbasba log(gba(Y ,R)−
∑

(i,p):(a,b)∈p

λ̄(i,p)

+ Cba + sba) +
∑
v∈V

γvsv log(cv − gv(Y ) + sv), (12)

where the elements of vectors µ , [µba](b,a)∈E ∈ R|E|+ and
γ , [γv]v∈V ∈ R|V|+ are the positive Lagrange multiplier esti-
mates corresponding to (10a) and (10b) respectively, and the
vector s ∈ R|E|+|V|+ consists of the positive values [sba](b,a)∈E



and [sv]v∈V called shifts [44]. Intuitively, the Lagrangian
barrier function in (12) penalizes the infeasibility of the link
and cache constraints, and the shifts allow the constraints to
be violated to some extent. Consider the following problem:

max
(Y ,R)

Ψ(Y ,R,µk,γk, sk) (13)

s.t. (Y ,R) ∈ B,

where the values µk,γk, sk are given, and B is the box
constraints set defined by (10c) and (10d). Then the necessary
optimality condition for Problem (13) is

‖P ((Y ,R) , ∇Y ,RΨ(Y ,R,µk,γk, sk)) ‖ = 0, (14)

where P (a , b) , a−ΠB(a+b), and ΠB(a) is the projection
of the vector a on the set B. At the k-th iteration, LBSB
updates Yk,Rk by finding a point in B, such that

‖P ((Y ,R) , ∇Y ,RΨ(Y ,R,µk,γk, sk)) ‖ ≤ ωk, (15)

where parameter ωk ≥ 0 indicates the accuracy of the solution;
when ωk = 0, the point (Yk,Rk) satisfies the necessary opti-
mality condition (14). In general, this point can be found by
iterative algorithms such as interior-point methods or projected
gradient ascent. Here, we use the trust-region algorithm [45].

After updating (Yk,Rk), LBSB checks whether the solution
is in a “locally convergent regime” (with tolerance δk). If so, it
updates the Lagrange multiplier estimates. It also updates the
accuracy parameter ωk+1, the tolerance parameter δk+1 and
the shifts sk+1; these updates differ depending on whether
the algorithm is in a locally convergent regime or not. These
iterations continue until the algorithm converges; a high-level
summary of LBSB is described in Alg. 1. We refer the inter-
ested reader to Conn et al. [44] for a detailed description of the
algorithm. Under relatively mild assumptions (see Lemma 2),
the solution generated by LBSB converges to a KKT point and
the Lagrange multiplier estimates converge to the Lagrange
multipliers corresponding to that KKT point.
Guarantees. For general non-convex problems, the KKT
point to which LBSB converges comes with no optimality
guarantees. Our main contribution is showing that due to
DR-submodularity, applying LBSB to Problem (9) yields a
stronger result. We first need a few additional assumptions.

Definition 1. A function Un : R+ → R has logarithmic
diminishing return if there exists a finite number θn ∈ R+

such that λdUn(λ)
dλ ≤ θn for all λ ∈ [0,∞).

Assumption 1. All utility functions Un, n ∈ N , have
logarithmic diminishing return.

Assumption 2. At least one of the utility functions is un-
bounded from above.

We want to stress that Assumptions 1 and 2 are relatively
mild. For example, consider the well-known α−fair utility
functions [3]. All α−fair utility functions with α ≥ 1 have
logarithmic diminishing return. For α = 1, the utility function
is unbounded from above. Therefore, for example, a problem

Algorithm 1 Summary of Lagrangian Barrier with Simple
Bounds (LBSB)

1: Set accuracy parameter ω0

2: Set tolerance parameter for locally convergent regime δ0
3: Set Lagrange multiplier estimates µ0, γ0, and other initial

parameters
4: k ← −1
5: repeat
6: k ← k + 1
7: Compute shifts sk
8: Find (Yk,Rk) ∈ B such that

||P ((Yk,Rk) , ∇Y ,RΨ(Yk,Rk,µk,γk, sk))|| ≤ ωk.
9: if in locally convergent regime (with threshold δk)

then
10: Update Lagrange multiplier estimates µk+1,γk+1

11: Update ωk+1 using ωk
12: Update δk+1 using δk
13: else
14: Update ωk+1 using initial parameters
15: Update δk+1 using initial parameters
16: end if
17: until convergence

instance with α−fair utility functions, where α ≥ 1 and at
least one function has α = 1, satisfies Asssumptions 1 and 2.

Definition 2. Regular point: If the gradients of the active
inequality constraints at (Y ,R) are linearly independent, then
(Y ,R) is called a regular point.

Our main result is the following theorem, characterizing
the quality of regular limit points of the sequence {(Yk,Rk)}
generated by Alg. 1. We note that the regularity of limit points
is typically considered in the analysis of other methods in
constrained optimization literature as well [46]–[48].

Theorem 1. Consider a problem instance with link ca-
pacity vector C ∈ R|E|+ and demand rate vector λ̄ ∈
R|N |+ . Suppose Assumptions 1 and 2 hold, and {(Yk,Rk)},
k ∈ K is a sub-sequence generated by Alg. 1 which con-
verges to a regular point

[
Ŷ (C, λ̄), R̂(C, λ̄)

]
. Denote the

optimal solution by
[
Y ∗(C, λ̄),R∗(C, λ̄)

]
. Then, we have

limm→∞ F (R̂(mC,mλ̄))/F (R∗(mC,mλ̄)) = 1.

Hence, the value of the objective at a regular limit point
of Alg. 1 approaches the optimal objective value, when link
capacities and demand rates grow to infinity by the same factor
m. Note that increasing the link capacities does not make the
problem easier, since demand rates increase proportionally.

The proof of Theorem 1 follows from a sequence of lemmas,
which we now outline.

Lemma 2. Let {(Yk,Rk)}, k ∈ K, be any subsequence
generated by Alg. 1 which converges to a regular point
(Ŷ , R̂). Then (Ŷ , R̂) is a KKT point for Problem (9).

Proof. Please see Appendix B. The lemma is proved by



showing that the regularity assumption is equivalent to the
assumption stated in Theorem 4.4 of Conn et. al. [44].

The next key technical lemma characterizes the difference
between the value of the objective at a KKT point and the
global optimal value:

Lemma 3. Let (Ŷ , R̂) be a KKT point and (Y ∗,R∗) be
the optimal point for Problem (9). Then F (R̂) ≥ F (R∗) −∑

(b,a)∈E µ̂ba

(∑
(i,p):(a,b)∈p λ̄(i,p) − Cba

)
, where µ̂ba is the La-

grange multiplier corresponding to link (b, a) in constraint (10a),
for all (b, a) ∈ E .

Proof. Please see Appendix C. Key elements in proving
Lemma 3 are the concavity of F (·) and the fact that gba(·) are
monotone DR-submodular functions for all (b, a) ∈ E .

Lemma 4. Under Assumption 1,∑
(b,a)∈E

µ̂ba(
∑

(i,p):(a,b)∈p

λ̄(i,p)−Cba) ≤ θ
∑

(b,a)∈E

nab
Cba

(
∑

(i,p):(a,b)∈p

λ̄(i,p)−Cba),

where nab is the number of paths passing through (a, b), and
θ , maxn∈N θn is the maximum logarithmic diminishing
return parameter among utilities.

Proof. Please see Appendix D.

Proof of Theorem 1. By Lemma 2, we know that[
Ŷ (mC,mλ̄), R̂(mC,mλ̄)

]
is a KKT point for all

m ∈ R+. Thus, Lemma 3 and Lemma 4 imply that, for all
m ∈ R+, F (R̂(mC,mλ̄)) is bounded from below, i.e.,

F (R̂(mC,mλ̄)) ≥

F (R∗(mC,mλ̄))− θ
∑

(b,a)∈E

nab
Cba

(
∑

(i,p):(a,b)∈p

λ̄(i,p)−Cba).(16)

According to (8), F (R∗(mC,mλ̄)) = U(λ∗(mC,mλ̄)).
The rate vector mλ∗(C, λ̄) is feasible in Problem (9) with link
capacity vector mC and demand rate vector mλ̄, and we have
U(λ∗(mC,mλ̄)) ≥ U(mλ∗(C, λ̄)). Combining this and the
fact that there exists an unbounded utility function Un(.)
which grows without bound as the input rate goes to infinity
(Assumption 2), we have limm→∞ U(λ∗(mC,mλ̄)) =∞, or
equivalently limm→∞ F (R∗(mC,mλ̄)) = ∞. This implies
that there exists a m0 > 0 such that F (R∗(mC,mλ̄)) > 0,
for all m ≥ m0. We conclude the proof by dividing both
sides of (16) by F (R∗(mC,mλ̄)) for m ≥ m0, and letting
m→∞.

Convergence Rate. We briefly discuss the convergence rate
studied by Conn et. al. [44] as applied to UTILITYMAX; to
do so, we need the following additional assumption:

Assumption 3. The function F (R), its gradient, and elements
of its Hessian are Lipschitz continuous.

Proposition 1. Suppose Assumption 3 holds, and iterates
{(Yk,Rk)} generated by Alg. 1 have a single limit point
(Ŷ , R̂) which is regular, and satisfies the second-order suffi-
ciency condition (see Section 4.3 of Bertsekas [48]). Then with
proper choice of parameters, {(Yk,Rk)} converges to (Ŷ , R̂)

at least R-linearly for sufficiently large k, i.e., there exists r ∈
(0, 1), P > 0, and k0 such that ‖(Yk,Rk)− (Ŷ , R̂)‖ ≤ Prk,
for all k ≥ k0.

We omit the proof for brevity; it follows by verifying that
the assumptions in Proposition 1 imply all the assumptions for
part (ii) of Theorem 5.3 and Corollary 5.7 of Conn et. al. [44].

B. Convex Relaxation of UTILITYMAX

An alternative approach for solving Problem (9) is to come
up with a convex relaxation of constraint set D1. This turns
our problem into a convex optimization problem which can
be solved efficiently. Similar to prior literature [7], [49], we
construct concave upper and lower bounds for the non-convex
and non-concave functions in constraints (10a), using the so-
called Goemans and Williamson inequality:

Lemma 5 (Goemans and Williamson [50]). For Z ∈
[0, 1]n define A(Z) , 1 −

∏n
i=1(1 − zi) and B(Z) ,

min{1,
∑n
i=1 zi}. Then, (1− 1/e)B(Z) ≤ A(Z) ≤ B(Z).

Using Lemma 5, we obtain

(1− 1/e)g̃ba(Y ,R) ≤ gba(Y ,R) ≤ g̃ba(Y ,R), (17)

where

g̃ba(Y ,R) ,
∑

(i,p)∈N :(a,b)∈p

λ̄(i,p) min

{
1,
r(i,p)

λ̄(i,p)

+

a∑
k=1

ypki

}
are concave functions for all (b, a) ∈ E . We use this to
formulate the following convex problem:

CONVEXUTILITYMAX

maximize F (R) (18a)
subject to (Y ,R) ∈ D2, (18b)

where D2 ⊆ R|V|×|I| × R|N | is the set of (Y ,R) satisfying:

g̃ba(Y ,R)) ≥
∑

(i,p):(b,a)∈p λ̄(i,p) − Cba
1− 1/e

, ∀(b, a) ∈ E

gv(Y ) ≤ cv, ∀v ∈ V
0 ≤ yvi ≤ 1, ∀v ∈ V,∀i ∈ I
0 ≤ rn ≤ λ̄n, ∀n ∈ N .

Although g̃ba(·), for all (b, a) ∈ E , are non-differentiable, the
optimal solution can be found using sub-gradient methods as
D2 is convex. The following theorem provides a bound on the
optimal value of Problem (18) with respect to Problem (9).

Theorem 2. Let (Y ∗∗C ,R∗∗C ) be the optimal solution of Prob-
lem (18) with link capacity vector C. Also let (Y ∗C ,R

∗
C)

and (Y ∗C′ ,R
∗
C′) be the optimal solutions of two instances of

Problem (9) with link capacity vectors C and C ′, respectively,
where for all (b, a) ∈ E

C′ba = Cba −
1

e− 1
[
∑

(i,p):(a,b)∈p λ̄(i,p) − Cba]. (20)

Then, (Y ∗∗C ,R∗∗C ) is a feasible solution to Problem (9) with
link capacity vector C, and F (R∗C′) ≤ F (R∗∗C ) ≤ F (R∗C).



TABLE I: Graph Topologies and Experiment Parameters.
Graph |V| |E| |I| |N | |Q| c′v F̂(loose)F̂(tight) #Vars

cycle 30 60 10 100 10 2 9.53 9.53 344
lollipop 30 240 10 100 10 2 9.53 9.53 274
geant 22 66 10 100 10 2 9.53 9.53 228
abilene 9 26 10 40 4 2 3.81 3.81 85
dtelekom 68 546 15 125 15 3 11.91 11.91 301
balanced-tree 63 124 30 450 15 3 42.88 28.45 1434
grid-2d 64 224 30 450 15 3 42.88 37.08 1665
hypercube 64 384 15 450 15 3 42.88 35.59 1189
small-world 64 308 30 450 15 3 42.88 37.90 1349
erdos-renyi 64 378 30 450 15 3 42.88 35.06 1191

Proof. Let D3 ⊆ R|V||I| × R|N | be the set of (Y ,R)
satisfying:

gba(Y ,R) ≥
∑

(i,p):(a,b)∈p λ̄(i,p) − Cba
1− 1/e

∀(b, a) ∈ E

gv(Y ) ≤ cv ∀v ∈ V
0 ≤ yvi ≤ 1 ∀v ∈ V,∀i ∈ I
0 ≤ rn ≤ λ̄n ∀n ∈ N

Observe that D3 is the constraint set for Problem (9) with the
link capacity vector C ′. By (17), we have D3 ⊆ D2 ⊆ D1.
By definition, F (R∗C), F (R∗∗C ), and F (R∗C′) are maximum
values of F (R) subject to D1,D2, and D3, respectively. As a
result, we have F (R∗C′) ≤ F (R∗∗C ) ≤ F (R∗C).

Thm. 2 states that the solution to the convex problem is no
worse than the optimum of an instance of the original problem,
with link capacities C ′ba = Cba − 1

e−1 [
∑

(i,p):(a,b)∈p λ̄(i,p) −
Cba]. Note that C ′ba can be negative. In that case, Problem (9)
with negative link capacities has no feasible solutions, and the
solution of Problem (18) has no lower bound.

Comparing this to LBSB, the convex relaxation is a simpler
problem, as it requires solving a convex program. On the other
hand, LBSB provides better optimality guarantees, especially
when the demand rate of requests exceeds the capacity of
the links. In practice, as we see in the numerical evaluations
(Section V), the Lagrangian barrier outperforms the convex
relaxation method for a wide range of network topologies and
parameter settings.

V. NUMERICAL EVALUATION

In this section, we evaluate the performance of the proposed
methods, i.e., LBSB introduced in Section IV-A and the con-
vex relaxation introduced in Section IV-B. We also implement
two greedy algorithms and compare the performance of the
proposed methods against these greedy algorithms.
Experiment Setup. We evaluate our algorithms on 10 graphs
summarized in Table I. Given a graph G(V, E), we generate
a catalog I, and assign a cache to each node in the graph.
For every item i ∈ I, we designate a source node selected
uniformly at random (u.a.r.) from V . We set the capacity cv
of every node v so that c′v = cv − |{i : v ∈ Si}| is constant
among all nodes in V . We then generate a set of requests
N as follows. First, we select a set Q nodes in V selected
u.a.r., that we refer to as query nodes: these are the only nodes
that generate requests. More specifically, for each query node
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(b) κ = 0.85
Fig. 2: Objectives performance. The figure shows the normalized
objective obtained by different algorithms across different topologies
and in two settings, i.e., the loose setting, with κ = 0.95 (Fig 2a),
and the tight setting with κ = 0.85 (Fig 2b). Note that solutions for
all 4 algorithms are feasible in all cases.
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(b) κ = 0.85
Fig. 3: Execution Times. Figures 3a and 3b show the execution times
for algorithms w.r.t. the number of variables, for the loose and tight
settings, respectively.
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Fig. 4: Effects of tightening the constraints. The figure shows the
objective values w.r.t. the looseness coefficient κ, for two topologies
abilene and geant. Note that solutions for all 4 algorithms are
feasible in all cases.

v ∈ Q, we generate ≈ |N |/|Q| requests according to a Zipf
distribution with parameter 1.2 and without replacement from
the catalog I. Each request is then routed over the shortest
path between the query node and the designated source for
the requested item. We assign a demand rate λ̄(i,p) = 1 to
every request n ∈ N . The values of |I|, |N |, |Q|, and cv for
each topology are given in Table I. Our process also makes
sure that each item i ∈ I is requested at least once.

We determine the link capacities Cba, (b, a) ∈ E , as follows.
First, note that the maximum possible load on each link
(b, a) ∈ E is λ(max)

ba ,
∑

(i,p):(a,b)∈p λ̄(i,p). We set the link

capacities as Cba = κλ
(max)
ba , where κ ∈ (0, 1] is a looseness



coefficient: the higher κ is, the easier it becomes to satisfy the
demand. Note that for every link (b, a), if Cba ≥ λ

(max)
ba (or

equivalently κ ≥ 1), then the link constraint corresponding
to (b, a) in (10a) is trivially satisfied. As κ decreases below
1, the link constraints are tightened, and finding optimal rate
and cache allocation strategies becomes non-trivial. For each
topology in Table I, we study two settings: (1) a loose setting,
where κ = 0.95 and (2) a tight setting, where κ = 0.85.
Algorithms. We implement2 Alg. 1 and refer to it as LBSB.
We run this algorithm until the convergence criterion in [44] is
met (with δ∗ = 10−4, ω∗ = 10−4). We also solve the convex
relaxation in (18) via a sub-gradient method, as described in
Section 7.5 of Bertsekas [48]; we refer to this algorithm by
CR, for convex relaxation. We run CR for a fixed number
of iterations (500 iterations). In addition, we implement two
greedy algorithms, i.e., Greedy1 and Greedy2. We describe
each of these algorithms below.
• Greedy1 consists of three steps; in Step 1, we initialize
Y = 0 and update R by solving (9) only w.r.t. R. This
is a convex optimization problem. In Step 2, Greedy1
keeps R fixed, as computed by Step 1, and updates
Y by maximizing the sum

∑
(b,a)∈E gba(Y ,R), subject

to the constraints (10b) and (10c) and only w.r.t. Y .
This is equivalent to minimizing the total long-term
time-average item load over the links of the graph (c.f.
Section III-A). Note that Step 2 is a monotone DR-
submodular maximization subject to a polytope, which
we solve via the Frank-Wolfe algorithm proposed by Bian
et. al. [16]. Finally in Step 3, Greedy1 updates R by
solving (9) w.r.t. R, one more time, while Y is fixed to
the value computed by Step 2.

• Greedy2 initializes Y = 0, and then alternatively
updates Y andR; we refer to the former step as the cache
allocation step and to the latter as the rate allocation step.
In the cache allocation step, Greedy2 “greedily” places
one item to a cache: it changes one zero variable (yvi = 0)
to 1, where (v, i) is the feasible pair with the largest
marginal gain in load reduction. Formally, (a) node v
has not fully used its cache capacity (gv(Y ) < c′v) and
(b) changing yvi from 0 to 1 has the highest increase
in the total sum

∑
(b,a)∈E gba(Y ,R) (or equivalently the

highest decrease in the aggregate item load). In the rate
allocation step, Greedy2 keeps Y constant from the
previous step, and updates R by solving (9) w.r.t. R.
Finally, Greedy2 terminates once node storage capac-
ities are depleted, i.e., there is no pair (v, i) left, s.t.,
yvi = 0 and yv < c′v.

Metrics. Throughout the experiments we report the objective
function F (R) obtained by different algorithms for the choice
of the logarithmic utility functions Un(λ) = log(λ + 0.1),
for all n ∈ N . Note that these utility functions satisfy As-
sumption 1 and Assumption 2. We observe that all algorithms
generate feasible solutions for all cases.

2Our code is publicly available at https://github.com/neu-spiral/
UtilityMaximizationProbCaching.

Objective Performance. Fig. 2 shows objectives attained
by different algorithms, normalized by the objective under
LBSB; the latter is given in the F̂(loose) and F̂(tight) columns
of Table I, for the loose (κ = 0.95) and tight (κ = 0.85)
settings, respectively. We observe that LBSB outperforms all
its competitors across all topologies in both settings, except for
one case (balanced-tree with κ = 0.85.) In Fig. 2a, we
see that in the loose setting, CR performance almost matches
LBSB and achieves better objective values in comparison with
Greedy1 and Greedy2. However, in Fig. 2b we see that
as the constraint set is tightened, the performance of CR
deteriorates. Moreover, by comparing Fig. 2a and Fig. 2b we
see that for some topologies (e.g., grid-2d, hypercube,
small-world, and erdos-renyi), the gap between the
objective values obtained by LBSB and other algorithms is
significantly higher in the tight constraints regime.
Execution Time. In Fig. 3, we plot the execution times of
all algorithms for each scenario as a function of the number
of variables in the corresponding instance of problem UTIL-
ITYMAX (reported in the last column of Table I). Figures 3a
and 3b correspond to Figures 2a and 2b (the loose and
tight settings), respectively. In particular, in the loose setting
(Fig. 3a) we see that the execution times for LBSB almost
match the execution times for Greedy2, and LBSB is much
faster than CR. In the tight setting (Fig. 3b), however, we
see that the execution time of LBSB is higher, particularly
when the number of variables is large (corresponding to larger
topologies, i.e., grid-2d, balanced-tree, hypercube,
small-world, and erdos-renyi). The main reason is
that, in the tight setting, the trust-region algorithm used as
a subroutine at each iteration requires a higher number of
iterations to satisfy (15); as a result, the execution time for
LBSB increases. Nonetheless, as we observed in Fig. 2b,
LBSB achieves significantly improved objective performance
compared to other algorithms.
Effect of Tightening Constraints. Motivated by our obser-
vation regarding the superior performance of LBSB in the
tighter setting, we study the effects of further decreasing the
looseness coefficient κ. In Fig. 4, we plot the objective values
achieved by different algorithms for looseness coefficients
κ = 0.5, 0.6, 0.7, 0.8, 0.85, 0.95, and 1. For brevity, we report
these results only for abilene and geant. From Fig. 4, we
observe that for both topologies, when κ = 1, all algorithms
achieve the optimal objective value; this is expected, because
as explained, when Cba ≥ λ

(max)
ba , the non-convex constraints

(10a) are trivially satisfied. As we tighten the constraints by
decreasing κ, we observe that all algorithms obtain smaller ob-
jectives, which is also expected. Crucially, LBSB significantly
outperforms other algorithms and remains quite resilient to
tightening of the constraints; for example, for both topologies,
when κ ≥ 0.8 LBSB still obtains the maximum objective
value, i.e., the same value as with κ = 1. In fact, for cycle,
the performance of LBSB remains practically invariant, while
all other algorithms deteriorate.

Moreover, we also see in Fig. 4 that for moderate tightness
of constraints (e.g., κ ≥ 0.8, CR) shows decent perfor-



mance and outperforms Greedy1 and Greedy2; however,
tightening the constraints further, e.g., for κ ≤ 0.7, grossly
affects the performance of CR: the objective values decrease
significantly, falling below that of the greedy algorithms. In
fact, this is expected from Thm. 2. To see this, note that when
κ < 1/e ≈ 0.36, for the capacities in (20) we have C ′ba < 0,
for all (a, b) ∈ E . As a result, based on Thm. 2, for κ < 1/e,
the lower bound on the optimal objective of CR is non-existent,
as the constraint set D3 (see (21)) is an empty set. In other
words, in this regime, CR comes with no guaranteed lower
bound.

VI. CONCLUSION

We studied a new class of non-convex optimization prob-
lems for joint content placement and rate allocation in cache
networks, and proposed solutions with optimality guarantees.
Our solutions establish a foundation for several possible future
investigations. First, in the spirit of Kelly et al. [1], studying
distributed algorithms that converge to a KKT point, and
providing similar guarantees as Thm. 1, is an important
open question. Second, designing new rounding techniques for
deterministic content placement is another open question.
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APPENDIX A
PROOF OF LEMMA 1

By Eq. (11), ∂2gba(Y ,R)
∂yvi∂yv′i′

≤ 0, ∂2gba(Y ,R)
∂yvi∂rn

≤ 0, and
∂2gba(Y ,R)
∂rn∂rn′

≤ 0, for all v, v′ ∈ V , i, i′ ∈ I, and n, n′ ∈ N .
This proves the DR-submodularity of gba(·), for all (b, a) ∈ E
(See [16]). In addition, since ∂gba(Y ,R)

∂yvi
≥ 0, and ∂gba(Y ,R)

∂rn
≥

0, for all v ∈ V, i ∈ I, n ∈ N , gba(·) are monotone, for all
(b, a) ∈ E .

APPENDIX B
PROOF OF LEMMA 2

Here we show that the regularity of a point (Ŷ , R̂) is
equivalent to the assumption stated in Theorem 4.4 of Conn et.
al. [44]. We divide the variables (Ŷ , R̂) into two distinct class
F and F ′, such that the variables in F ′ are equal to their upper
or lower bound and the variables in F are strictly between their
upper or lower bound. As a result, we have exactly |F ′| active
bounding constraints. We denote by A the set of active link
and cache constraints (10a), (10b). Thus, we can decompose
the Jacobian matrix for the active constraints at point (Ŷ , R̂)

as J =
[

J[A F] J[A F′]
0|F′|×|F| Q|F′|×|F′|

]
. We denote by M[s1 s2] is a sub-

matrix of the matrix M where rows are picked according to
set s1 and columns are picked according to set s2. The last
|F ′| rows correspond to active box constraints (10c), (10d). It
can be easily seen that Q|F ′|×|F ′| is a diagonal matrix with
elements of diagonal being +1 or −1 depending on whether
the variable is at its upper bound or lower bound. If (Ŷ , R̂)
is a regular point, then J is full rank at (Ŷ , R̂). Hence, it

can be seen that J[A F ] is also full rank, which is exactly the
assumption in Theorem 4.4 of Conn et. al. [44].

APPENDIX C
PROOF OF LEMMA 3

By definition, the KKT necessary conditions for opti-
mality hold at (Ŷ , R̂). Hence, there exist Lagrange mul-
tipliers [µ̂ba](b,a)∈E associated with (10a), [γ̂v]v∈V associ-
ated with (10b), [ξ̂vi]v∈V,i∈I , [ξ̂′vi]v∈V,i∈I associated with
(10c), [η̂(i,p)](i,p)∈N , [η̂′(i,p)](i,p)∈N associated with (10d).
Due to the concavity of F , we can write F (R̂) ≥
F (R∗) − ∇Y ,RF (R̂)T

[
(Y ∗,R∗) − (Ŷ , R̂)

]
. After ap-

plying the first order necessary condition and comple-
mentary slackness, we can write F (R̂) ≥ F (R∗) +∑

(b,a)∈E µ̂ba∇Y ,Rgba(Ŷ , R̂)T
[
(Y ∗,R∗) − (Ŷ , R̂)

]
. As

stated in Lemma 1, functions gba(·), for all (b, a) ∈ E
are monotone DR-submodular. Therefore, we can use the
following Lemma from Bian et al. [39]:

Lemma 6 (Bian et al. [39]). For any differentiable DR-
submodular function f : X → R and any two points a, b
in X , we have

(b− a)T∇f(a) ≥ f(a ∨ b) + f(a ∧ b)− 2f(a),

where ∨ and ∧ are coordinate-wise maximum and minimum
operations, respectively.

By Lemma 6, we have F (R̂) ≥ F (R∗) +∑
(b,a)∈E µ̂ba

(
gba(Ŷ ∨ Y ∗, R̂ ∨ R∗) + gba(Ŷ ∧ Y ∗, R̂ ∧

R∗) − 2gba(Ŷ , R̂)
)
. By Lemma 1, gba(·) are monotone

and we know that they are positive for all (b, a) ∈ E .
Hence, gba(Ŷ ∨ Y ∗, R̂ ∨ R∗) ≥ gba(Y ∗,R∗) and
gba(Ŷ ∧ Y ∗, R̂ ∧ R∗) ≥ 0 for all (b, a) ∈ E .
Therefore, F (R̂) ≥ F (R∗) +

∑
(b,a)∈E µ̂ba

(
gba(Y ∗,R∗) −

2gba(Ŷ , R̂)
) (∗∗)
≥ F (R∗) −

∑
(b,a) µ̂ba(

∑
(i,p):(a,b)∈p λ̄(i,p) −

Cba), where (∗∗) is due to complementary slackness.

APPENDIX D
PROOF OF LEMMA 4

We call a link (b, a) an active link if∑
(i,p):(a,b)∈p λ(i,p)

∏a
v=p1

(1 − yvi) = Cba. Since Cba
is positive, for an active link (b, a) there exists a set

N̂ active
(b,a) ,

{
(i, p) : (a, b) ∈ p, (λ̄(i,p) − r̂(i,p))

a∏
v=p1

(1− ŷvi) > 0,

∑
(i,p)∈N̂ active

(b,a)

(λ̄(i,p) − r̂(i,p))

a∏
v=p1

(1− ŷvi) = Cba
}

Suppose (b, a) is an active link. By definition, we have
r̂(i,p) < λ̄(i,p), ∀(i, p) ∈ N̂ active

(b,a). By writing the KKT
conditions with respect to r̂(i,p) for (i, p) ∈ N̂ active

(b,a), we have
dU(i,p)(λ̄(i,p)−r̂(i,p))

dλ =
∑

(c,d):(c,d)∈p µ̂dc
∏c
v=p1

(1 − ŷvi) +

η̂(i,p). This implies dU(i,p)(λ̄(i,p)−r̂(i,p))
dλ ≥ µ̂ba

∏a
v=p1

(1− ŷvi).
After multiplying both sides by (λ̄(i,p) − r̂(i,p)), and using



Assumption 1 and the fact that θ is the maximum among
logarithmic diminishing return parameters, we can write θ ≥
µ̂ba(λ̄(i,p) − r̂(i,p))

∏a
v=p1

(1 − ŷvi). By summing over all
(i, p) ∈ N̂ active

(b,a) , we have θ|N̂ active
(b,a) | ≥ µ̂baCba, or equivalently

µ̂ba ≤ θ
|N̂active

(b,a) |
Cba

. If (b, a) is not an active link, µ̂ba = 0. As a
result, we have

∑
(b,a)∈E µ̂ba(

∑
(i,p):(a,b)∈p λ̄(i,p) − Cba) ≤

θ
∑

(b,a)∈E nab
(∑

(i,p):(a,b)∈p λ̄(i,p) − Cba
)
/Cba, where the

last inequality is due to |N̂ active
(b,a) | ≤ nab.
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